Skip to main content

Advertisement

Log in

Increased expression of enolase α in human breast cancer confers tamoxifen resistance in human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Enolase-α (ENO-1) is a key glycolytic enzyme that has been used as a diagnostic marker to identify human lung cancers. To investigate the role of ENO-1 in breast cancer diagnosis and therapy, the mRNA levels of ENO-1 in 244 tumor and normal paired tissue samples and 20 laser capture-microdissected cell clusters were examined by quantitative real-time PCR analysis. Increased ENO-1 mRNA expression was preferentially detected in estrogen receptor-positive (ER+) tumors (tumor/normal ratio >90-fold) when compared to ER-negative (tumor/normal ratio >20-fold) tumor tissues. The data presented here demonstrate that those patients whose tumors highly expressed ENO-1 had a poor prognosis with greater tumor size (>2 cm, *P = .017), poor nodal status (N > 3, *P = .018), and a shorter disease-free interval (≦1 year, *P < .009). We also found that higher-expressing ENO-1 tumors confer longer distance relapse (tumor/normal ratio = 82.8–92.4-fold) when compared to locoregional relapse (tumor/normal ratio = 43.4-fold) in postsurgical 4-hydroxy-tamoxifen (4-OHT)-treated ER+ patients (*P = .014). These data imply that changes in tumor ENO-1 levels are related to clinical 4-OHT therapeutic outcome. In vitro studies demonstrated that decreasing ENO-1 expression using small interfering RNA (siRNA) significantly augmented 4-OHT (100 nM)-induced cytotoxicity in tamoxifen-resistant (Tam-R) breast cancer cells. These results suggest that downregulation of ENO-1 could be utilized as a novel pharmacological approach for overcoming 4-OHT resistance in breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethylsulfoxide

E:

Estrogens

DOX:

Doxorubicin

ENO-1:

Enolase α

ENO-2:

Enolase β

ENO-3:

Enolase γ

ER:

Estrogen receptor

FACS:

Fluorescence-activated cell sorter

FAS:

Fetal calf serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GF:

Griseofulvin

GUS:

β-Glucuronidase

IHC:

Immunohistochemistry

LCM:

Laser capture microdissection

MBP-1:

c-Myc promoter-binding protein

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

NFκB:

Nuclear factor kappa B

4-OHT:

4-Hydroxytamoxifen

PBS:

Phosphate-buffered saline

PDTC:

Pyrrolidine dithiocarbamate

PR:

Progesterone receptor

PTX:

Paclitaxel

RT-PCR:

Reverse transcriptase polymerase chain reaction

siRNA:

Small interfering RNA

TBP:

TATA-box-binding protein

References

  1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  2. Dodwell D, Williamson D (2008) Beyond tamoxifen: extended and late extended endocrine therapy in postmenopausal early breast cancer. Cancer Treat Rev 34:137–144

    Article  CAS  PubMed  Google Scholar 

  3. Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN (1995) Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol 13:513–529

    CAS  PubMed  Google Scholar 

  4. Chen B, Wang Y, Kane SE, Chen S (2008) Improvement of sensitivity to tamoxifen in estrogen receptor-positive and Herceptin-resistant breast cancer cells. J Mol Endocrinol 41:367–377

    Article  CAS  PubMed  Google Scholar 

  5. Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, Jeong HG, Kang KW (2008) Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med 45:537–546

    Article  CAS  PubMed  Google Scholar 

  6. Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L, Chen S (2008) Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res 68:4910–4918

    Article  CAS  PubMed  Google Scholar 

  7. Honorat M, Mesnier A, Vendrell J, Guitton J, Bieche I, Lidereau R, Kruh GD, Dumontet C, Cohen P, Payen L (2008) ABCC11 expression is regulated by estrogen in MCF7 cells, correlated with estrogen receptor alpha expression in postmenopausal breast tumors and overexpressed in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer 15:125–138

    Article  CAS  PubMed  Google Scholar 

  8. Lebioda L, Stec B (1988) Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Nature 333:683–686

    Article  CAS  PubMed  Google Scholar 

  9. Chi-Shing Cho W (2007) Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer. Biomed Pharmacother 61:515–519

    Article  Google Scholar 

  10. Horiatis D, Wang Q, Pinski J (2004) A new screening system for proliferation-independent anti-cancer agents. Cancer Lett 210:119–124

    Article  CAS  PubMed  Google Scholar 

  11. Riby JE, Firestone GL, Bjeldanes LF (2008) 3, 3′-diindolylmethane reduces levels of HIF-1alpha and HIF-1 activity in hypoxic cultured human cancer cells. Biochem Pharmacol 75:1858–1867

    Article  CAS  PubMed  Google Scholar 

  12. Sims PA, Menefee AL, Larsen TM, Mansoorabadi SO, Reed GH (2006) Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit. J Mol Biol 355:422–431

    Article  CAS  PubMed  Google Scholar 

  13. Chang YS, Wu W, Walsh G, Hong WK, Mao L (2003) Enolase-alpha is frequently down-regulated in non-small cell lung cancer and predicts aggressive biological behavior. Clin Cancer Res 9:3641–3644

    CAS  PubMed  Google Scholar 

  14. Ray R, Miller DM (1991) Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol 11:2154–2161

    CAS  PubMed  Google Scholar 

  15. Subramanian A, Miller DM (2000) Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275:5958–5965

    Article  CAS  PubMed  Google Scholar 

  16. Fan P, Wang J, Santen RJ, Yue W (2007) Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res 67:1352–1360

    Article  CAS  PubMed  Google Scholar 

  17. Aerts JL, Gonzales MI, Topalian SL (2004) Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques 36:84–86, 88, 90–91

    Google Scholar 

  18. Chen F, Kim E, Wang CC, Harrison LE (2005) Ciglitazone-induced p27 gene transcriptional activity is mediated through Sp1 and is negatively regulated by the MAPK signaling pathway. Cellular signalling 17:1572–1577

    Article  CAS  PubMed  Google Scholar 

  19. Chen CS, Wu CH, Lai YC, Lee WS, Chen HM, Chen RJ, Chen LC, Ho YS, Wang YJ (2008) NF-kappaB-activated tissue transglutaminase is involved in ethanol-induced hepatic injury and the possible role of propolis in preventing fibrogenesis. Toxicology 246:148–157

    Article  CAS  PubMed  Google Scholar 

  20. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson DS, Ogden SK, Stratton SA, Piechan JL, Nguyen TT, Smulian GA, Barton MC (2005) A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Molecular and cellular biology 25:1200–1212

    Article  CAS  PubMed  Google Scholar 

  22. Tiseo M, Ardizzoni A, Cafferata MA, Loprevite M, Chiaramondia M, Filiberti R, Marroni P, Grossi F, Paganuzzi M (2008) Predictive and prognostic significance of neuron-specific enolase (NSE) in non-small cell lung cancer. Anticancer Res 28:507–513

    CAS  PubMed  Google Scholar 

  23. He P, Naka T, Serada S, Fujimoto M, Tanaka T, Hashimoto S, Shima Y, Yamadori T, Suzuki H, Hirashima T, Matsui K, Shiono H, Okumura M, Nishida T, Tachibana I, Norioka N, Norioka S, Kawase I (2007) Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer. Cancer Sci 98:1234–1240

    Article  CAS  PubMed  Google Scholar 

  24. Chang GC, Liu KJ, Hsieh CL, Hu TS, Charoenfuprasert S, Liu HK, Luh KT, Hsu LH, Wu CW, Ting CC, Chen CY, Chen KC, Yang TY, Chou TY, Wang WH, Whang-Peng J, Shih NY (2006) Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res 12:5746–5754

    Article  CAS  PubMed  Google Scholar 

  25. Panasci L, Jean-Claude BJ, Vasilescu D, Mustafa A, Damian S, Damian Z, Georges E, Liu Z, Batist G, Leyland-Jones B (1996) Sensitization to doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate. Biochem Pharmacol 52:1097–1102

    Article  CAS  PubMed  Google Scholar 

  26. Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V, Giuliano AE, Cabot MC (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272:1682–1687

    Article  CAS  PubMed  Google Scholar 

  27. Fujita T, Washio K, Takabatake D, Takahashi H, Yoshitomi S, Tsukuda K, Ishibe Y, Ogasawara Y, Doihara H, Shimizu N (2005) Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated multidrug resistance. Int J Cancer 117:670–682

    Article  CAS  PubMed  Google Scholar 

  28. Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401

    Article  CAS  PubMed  Google Scholar 

  29. Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093

    Article  CAS  PubMed  Google Scholar 

  30. Ray RB, Steele R, Seftor E, Hendrix M (1995) Human breast carcinoma cells transfected with the gene encoding a c-myc promoter-binding protein (MBP-1) inhibits tumors in nude mice. Cancer Res 55:3747–3751

    CAS  PubMed  Google Scholar 

  31. Kang Y, Cortina R, Perry RR (1996) Role of c-myc in tamoxifen-induced apoptosis estrogen-independent breast cancer cells. J Natl Cancer Inst 88:279–284

    Article  CAS  PubMed  Google Scholar 

  32. Mandlekar S, Kong AN (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477

    Article  CAS  PubMed  Google Scholar 

  33. Planas-Silva MD, Hamilton KN (2007) Targeting c-Src kinase enhances tamoxifen’s inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins. Cancer Chemother Pharmacol 60:535–543

    Article  CAS  PubMed  Google Scholar 

  34. Zheng A, Kallio A, Harkonen P (2007) Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology 148:2764–2777

    Article  CAS  PubMed  Google Scholar 

  35. Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443–456

    Article  CAS  PubMed  Google Scholar 

  36. Vendrell JA, Bieche I, Desmetz C, Badia E, Tozlu S, Nguyen C, Nicolas JC, Lidereau R, Cohen PA (2005) Molecular changes associated with the agonist activity of hydroxy-tamoxifen and the hyper-response to estradiol in hydroxy-tamoxifen-resistant breast cancer cell lines. Endocr Relat Cancer 12:75–92

    Article  CAS  PubMed  Google Scholar 

  37. Quaedackers ME, van den Brink CE, van der Saag PT, Tertoolen LG (2007) Direct interaction between estrogen receptor alpha and NF-kappaB in the nucleus of living cells. Mol Cell Endocrinol 273:42–50

    Article  CAS  PubMed  Google Scholar 

  38. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37:1130–1144

    Article  CAS  PubMed  Google Scholar 

  40. Harvell DM, Richer JK, Singh M, Spoelstra N, Finlayson C, Borges VF, Elias AD, Horwitz KB (2008) Estrogen regulated gene expression in response to neoadjuvant endocrine therapy of breast cancers: tamoxifen agonist effects dominate in the presence of an aromatase inhibitor. Breast Cancer Res Treat 112:489–501

    Article  CAS  PubMed  Google Scholar 

  41. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  42. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  43. Elledge RM, Green S, Ciocca D, Pugh R, Allred DC, Clark GM, Hill J, Ravdin P, O’Sullivan J, Martino S, Osborne CK (1998) HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a southwest oncology group study. Clin Cancer Res 4:7–12

    CAS  PubMed  Google Scholar 

  44. John S, Nayvelt I, Hsu HC, Yang P, Liu W, Das GM, Thomas T, Thomas TJ (2008) Regulation of estrogenic effects by beclin 1 in breast cancer cells. Cancer Res 68:7855–7863

    Article  CAS  PubMed  Google Scholar 

  45. Peng QP, Zhou JM, Zhou Q, Pan F, Zhong DP, Liang HJ (2008) Downregulation of the hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil. Chemotherapy 54:357–363

    Article  CAS  PubMed  Google Scholar 

  46. Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B (2008) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17:1533–1545

    Article  CAS  PubMed  Google Scholar 

  47. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  PubMed  Google Scholar 

  48. Malorni L, Cacace G, Cuccurullo M, Pocsfalvi G, Chambery A, Farina A, Di Maro A, Parente A, Malorni A (2006) Proteomic analysis of MCF-7 breast cancer cell line exposed to mitogenic concentration of 17beta-estradiol. Proteomics 6:5973–5982

    Article  CAS  PubMed  Google Scholar 

  49. Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES (2005) Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics 4:1686–1696

    Article  CAS  PubMed  Google Scholar 

  50. Ejma M, Misiuk-Hojlo M, Gorczyca WA, Podemski R, Szymaniec S, Kuropatwa M, Rogozinska-Szczepka J, Bartnik W (2008) Antibodies to 46-kDa retinal antigen in a patient with breast carcinoma and cancer-associated retinopathy. Breast Cancer Res Treat 110:269–271

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council, grant NSC 95-2320-B-038-016-MY3 for Dr. Ho, and NSC 96-2314-B-038-002 for Dr. Wu, and by the Cathay Medical Center (95CGH-TMU-09 and 96CGH-TMU-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sy-Jye Leu, Yuan-Soon Ho or Chih-Hsiung Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2009_492_MOESM1_ESM.tif

Fig. S1 RT-PCR analyses for ENO-1 in human breast carcinoma tissues. mRNA expression levels for ENO-1 and GUS were detected as specific single bands (403 and 165 bp, respectively) in both tumor and adjacent normal tissues. PCR was performed for 35 cycles. One hundred cases are represented in this agarose gel image (TIFF 3,564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, SH., Chang, CC., Chen, CS. et al. Increased expression of enolase α in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 121, 539–553 (2010). https://doi.org/10.1007/s10549-009-0492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0492-0

Keywords

Navigation