Skip to main content

Advertisement

Log in

Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Because DNA methyltransferase (DNMT) inhibitors like azacytidine and decitabine are known to be effective in the clinic for diseases like myelodysplastic syndromes that may result in part from transcriptional dysregulation due to epigenetic changes, there is interest in developing novel DNMT inhibitors that would be more effective and less toxic. The effects of one such agent, zebularine, which inhibits DNMT and cytidine deaminase, were assessed in two human breast cancer cell lines, MDA-MB-231 and MCF-7. Zebularine treatment inhibited cell growth in a dose and time dependent manner with an IC-50 of ~100 μM and 150 μM in MDA-MB-231 and MCF-7 cells, respectively, on 96 h exposure. This was associated with increased expression of p21, decreased expression of cyclin-D, and induction of S-phase arrest. At high doses zebularine induced changes in apoptotic proteins in a cell line specific manner manifested by alteration in caspase-3, Bax, Bcl2 and PARP cleavage. Like other DNMT inhibitors, zebularine decreased expression of DNMTs post-transcriptionally as well as expression of other epigenetic regulators like methyl CpG binding proteins and global acetyl H3 and H4 protein levels. Its capacity to reexpress epigenetically silenced genes in human breast cancer cells at low doses was confirmed by its ability to induce expression of estrogen and progesterone receptor mRNA in association with changes suggestive of active chromatin at the ER promoter as evidenced by ChIP. Finally, its effect in combination with other DNMT or HDAC inhibitors like decitabine or vorinostat was explored. The combination of 50 μM zebularine with decitabine or vorinostat significantly inhibited cell proliferation and colony formation in MDA-MB-231 cells compared with either drug alone. These findings suggest that zebularine is an effective DNMT inhibitor and demethylating agent in human breast cancer cell lines and potentiates the effects of other epigenetic therapeutics like decitabine and vorinostat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113. doi:10.1126/science.1145720

    Article  CAS  PubMed  Google Scholar 

  2. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116. doi:10.1038/nrc1799

    Article  CAS  PubMed  Google Scholar 

  3. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692. doi:10.1016/j.cell.2007.01.029

    Article  CAS  PubMed  Google Scholar 

  4. Momparler RL, Vesely J, Momparler LF, Rivard GE (1979) Synergistic action of 5-aza-2′-deoxycytidine and 3-deazauridine on L1210 leukemic cells and EMT6 tumor cells. Cancer Res 39:3822–3827

    CAS  PubMed  Google Scholar 

  5. Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 81:6993–6997. doi:10.1073/pnas.81.22.6993

    Article  CAS  PubMed  Google Scholar 

  6. Constantinides PG, Taylor SM, Jones PA (1978) Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol 66:57–71. doi:10.1016/0012-1606(78)90273-7

    Article  CAS  PubMed  Google Scholar 

  7. Gabbara S, Bhagwat AS (1995) The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem J 307:87–92

    CAS  PubMed  Google Scholar 

  8. Beisler JA (1978) Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 21:204–208. doi:10.1021/jm00200a012

    Article  CAS  PubMed  Google Scholar 

  9. Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364–366. doi:10.1038/267364a0

    Article  CAS  PubMed  Google Scholar 

  10. Marquez VE, Liu PS, Kelley JA, Driscoll JS, McCormack JJ (1980) Synthesis of 1, 3-diazepin-2-one nucleosides as transition-state inhibitors of cytidine deaminase. J Med Chem 23:713–715. doi:10.1021/jm00181a001

    Article  CAS  PubMed  Google Scholar 

  11. Kim CH, Marquez VE, Mao DT, Haines DR, McCormack JJ (1986) Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J Med Chem 29:1374–1380. doi:10.1021/jm00158a009

    Article  CAS  PubMed  Google Scholar 

  12. Laliberte J, Marquez VE, Momparler RL (1992) Potent inhibitors for the deamination of cytosine arabinoside and 5-aza-2′-deoxycytidine by human cytidine deaminase. Cancer Chemother Pharmacol 30:7–11. doi:10.1007/BF00686478

    Article  CAS  PubMed  Google Scholar 

  13. Marquez VE, Barchi JJ Jr, Kelley JA et al (2005) Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology. Nucleosides Nucleotides Nucleic Acids 24:305–318. doi:10.1081/NCN-200059765

    Article  CAS  PubMed  Google Scholar 

  14. Hurd PJ, Whitmarsh AJ, Baldwin GS et al (1999) Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol 286:389–401. doi:10.1006/jmbi.1998.2491

    Article  CAS  PubMed  Google Scholar 

  15. Cheng JC, Matsen CB, Gonzales FA et al (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95:399–409

    Article  CAS  PubMed  Google Scholar 

  16. Scott SA, Lakshimikuttysamma A, Sheridan DP, Sanche SE, Geyer CR, DeCoteau JF (2007) Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol 35:263–273. doi:10.1016/j.exphem.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Rao SP, Rechsteiner MP, Berger C, Sigrist JA, Nadal D, Bernasconi M (2007) Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkitt’s lymphoma Akata cells. Mol Cancer 6:6

    Article  CAS  Google Scholar 

  18. Cheng JC, Weisenberger DJ, Gonzales FA et al (2004) Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 24:1270–1278. doi:10.1128/MCB.24.3.1270-1278.2004

    Article  CAS  PubMed  Google Scholar 

  19. Cheng JC, Yoo CB, Weisenberger DJ et al (2004) Preferential response of cancer cells to zebularine. Cancer Cell 6:151–158. doi:10.1016/j.ccr.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  20. Agoston AT, Argani P, Yegnasubramanian S et al (2005) Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J Biol Chem 280:18302–18310. doi:10.1074/jbc.M501675200

    Article  CAS  PubMed  Google Scholar 

  21. Hahm HA, Dunn VR, Butash KA et al (2001) Combination of standard cytotoxic agents with polyamine analogues in the treatment of breast cancer cell lines. Clin Cancer Res 7:391–399

    CAS  PubMed  Google Scholar 

  22. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protocols 1:2315–2319. doi:10.1038/nprot.2006.339

    Article  CAS  Google Scholar 

  23. Keen JC, Yan L, Mack KM et al (2003) A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat 81:177–186. doi:10.1023/A:1026146524737

    Article  CAS  PubMed  Google Scholar 

  24. Ferguson AT, Lapidus RG, Baylin SB, Davidson NE (1995) Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res 55:2279–2283

    CAS  PubMed  Google Scholar 

  25. Sharma D, Blum J, Yang X, Beaulieu N, Macleod AR, Davidson NE (2005) Release of methyl CpG binding proteins and histone deacetylase 1 from the Estrogen receptor alpha (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol Endocrinol 19:1740–1751. doi:10.1210/me.2004-0011

    Article  CAS  PubMed  Google Scholar 

  26. Margueron R, Licznar A, Lazennec G, Vignon F, Cavailles V (2003) Oestrogen receptor alpha increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. J Endocrinol 179:41–53. doi:10.1677/joe.0.1790041

    Article  CAS  PubMed  Google Scholar 

  27. Sheikh MS, Shao ZM, Chen JC, Li XS, Hussain A, Fontana JA (1994) Expression of estrogen receptors in estrogen receptor-negative human breast carcinoma cells: modulation of epidermal growth factor-receptor (EGF-R) and transforming growth factor alpha (TGF alpha) gene expression. J Cell Biochem 54:289–298. doi:10.1002/jcb.240540305

    Article  CAS  PubMed  Google Scholar 

  28. Barchi JJ, Musser S, Marquez VE (1992) The decomposition of 1-(beta-d-ribofuranosyl)-1, 2-dihydropyrimidin-2-one (zebularine) in alkali—mechanism and products. J Org Chem 57:536–541. doi:10.1021/jo00028a026

    Article  CAS  Google Scholar 

  29. Yoo CB, Cheng JC, Jones PA (2004) Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans 32:910–912. doi:10.1042/BST0320910

    Article  CAS  PubMed  Google Scholar 

  30. Ben-Kasus T, Ben-Zvi Z, Marquez VE, Kelley JA, Agbaria R (2005) Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol 70:121–133. doi:10.1016/j.bcp.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  31. Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021. doi:10.1158/1535-7163.MCT-06-0494

    Article  CAS  PubMed  Google Scholar 

  32. Tamm I, Wagner M, Schmelz K (2005) Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann Hematol 84:47–53. doi:10.1007/s00277-005-0013-0

    Article  CAS  PubMed  Google Scholar 

  33. Neureiter D, Zopf S, Leu T et al (2007) Apoptosis, proliferation and differentiation patterns are influenced by zebularine and SAHA in pancreatic cancer models. Scand J Gastroenterol 42:103–116. doi:10.1080/00365520600874198

    Article  CAS  PubMed  Google Scholar 

  34. Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11:341–351. doi:10.1016/S1097-2765(03)00037-6

    Article  CAS  PubMed  Google Scholar 

  35. Nelson DM, Ye X, Hall C et al (2002) Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol Cell Biol 22:7459–7472. doi:10.1128/MCB.22.21.7459-7472.2002

    Article  CAS  PubMed  Google Scholar 

  36. Milutinovic S, Zhuang Q, Niveleau A, Szyf M (2003) Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem 278:14985–14995. doi:10.1074/jbc.M213219200

    Article  CAS  PubMed  Google Scholar 

  37. Flotho C, Claus R, Batz C et al. (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. doi:10.1038/leu.2008.397

    PubMed  Google Scholar 

  38. Rhee I, Bachman KE, Park BH et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556. doi:10.1038/416552a

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Ferguson AT, Nass SJ et al (2000) Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60:6890–6894

    CAS  PubMed  Google Scholar 

  40. Yoo CB, Chuang JC, Byun HM et al (2008) Long-term epigenetic therapy with oral zebularine has minimal side effects and prevents intestinal tumors in mice. Cancer Prev Res 1:233–240. doi:10.1158/1940-6207.CAPR-07-0008

    Article  CAS  Google Scholar 

  41. Eliopoulos N, Cournoyer D, Momparler RL (1998) Drug resistance to 5-aza-2′-deoxycytidine, 2′, 2′-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol 42:373–378. doi:10.1007/s002800050832

    Article  CAS  PubMed  Google Scholar 

  42. Lemaire M, Momparler LF, Bernstein ML, Marquez VE, Momparler RL (2005) Enhancement of antineoplastic action of 5-aza-2′-deoxycytidine by zebularine on L1210 leukemia. Anticancer Drugs 16:301–308. doi:10.1097/00001813-200503000-00009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health (NIH CA 88843) and the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy E. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billam, M., Sobolewski, M.D. & Davidson, N.E. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat 120, 581–592 (2010). https://doi.org/10.1007/s10549-009-0420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0420-3

Keywords

Navigation