Skip to main content

Advertisement

Log in

Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Controversy exists regarding the topography of lymph vessels in breast cancer, their usefulness as prognostic factors, relationship with angiogenesis and whether active lymphangiogenesis occurs within the tumour. A series of 177 well-characterized breast cancers, with long term follow up, were stained with D2-40, CD31 and CD34. Distribution of lymphatics and lymph vessel density (LVD) were assessed in three areas, intratumoural, peripheral and peritumoural and correlated with clinicopathological criteria and patient prognosis. Microvessel density (MVD) was assessed and correlated with LVD. Double immunohistochemical staining with D2-40 and MIB-1 was carried out to assess the proliferative status of lymphatics and of the tumour emboli within. Peritumoural lymphatics were detected in all tumours whereas peripheral and intratumoural lymphatics were detected in 86 and 41% of specimens, respectively. Tumours with higher total LVD were significantly associated with the presence of lymph node (LN) metastasis and shorter overall survival (OS). In multivariate analysis, tumour grade, LN status and the presence of lymphovascular invasion, but not LVD, were independent poor prognostic factors. No association was found between LVD and MVD. Proliferating lymphatics were detected in 29% of specimens and were significantly associated with dense inflammatory infiltrate. In conclusion, lymphatics are located primarily in the peritumoural and peripheral areas in breast cancer and seem to play an important role in disease progression by being routes for tumour dissemination. The lack of correlation between lymphangiogenic and angiogenic characteristics suggests two distinct processes and the presence of active lymphangiogenesis, albeit in a small portion of specimens, may have important therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hong YK, Shin JW, Detmar M (2004) Development of the lymphatic vascular system: a mystery unravels. Dev Dyn 231(3):462–473

    Article  PubMed  CAS  Google Scholar 

  2. Al-Rawi MA, Mansel RE, Jiang WG (2005) Molecular and cellular mechanisms of lymphangiogenesis. Eur J Surg Oncol 31(2):117–121

    Article  PubMed  CAS  Google Scholar 

  3. Banerji S et al (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801

    Article  PubMed  CAS  Google Scholar 

  4. Breiteneder-Geleff S et al (1997) Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 151(4):1141–1152

    PubMed  CAS  Google Scholar 

  5. Chilosi M, Doglioni C, Dei Tos AP (2005) New diagnostic markers: podoplanin-d2–40. Pathologica 97(3):158–159

    PubMed  CAS  Google Scholar 

  6. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25

    Article  PubMed  CAS  Google Scholar 

  7. Hong YK, Detmar M (2003) Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314(1):85–92

    Article  PubMed  Google Scholar 

  8. Mohammed RAA et al (2007) Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. Am J Surg Pathol 31(12):1825–1833

    Article  PubMed  Google Scholar 

  9. Leu AJ et al (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60(16):4324–4327

    PubMed  CAS  Google Scholar 

  10. Padera TP et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886

    Article  PubMed  CAS  Google Scholar 

  11. Pathak AP, Bhujwalla ZM, Pepper MS 92004) Visualizing function in the tumor-associated lymphatic system. Lymphat Res Biol 2(4):165–172

    Article  PubMed  Google Scholar 

  12. Agarwal B et al (2005) Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol 29(11):1449–1455

    Article  PubMed  Google Scholar 

  13. Vleugel MM et al (2004) Lack of lymphangiogenesis during breast carcinogenesis. J Clin Pathol 57(7):746–751

    Article  PubMed  CAS  Google Scholar 

  14. Williams CS et al (2003) Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol 200(2):195–206

    Article  PubMed  CAS  Google Scholar 

  15. Van der Auwera I et al (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 11(21):7637–7642

    Article  PubMed  CAS  Google Scholar 

  16. Choi WW et al (2005) Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol 18(1):143–152

    Article  PubMed  CAS  Google Scholar 

  17. Bono P et al 2004 High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res 10(21):7144–7149

    Article  PubMed  CAS  Google Scholar 

  18. Kato T et al (2005) A quantitative analysis of lymphatic vessels in human breast cancer, based on LYVE-1 immunoreactivity. Br J Cancer 93(10):1168–1174

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura Y et al (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91(2):125–132

    Article  PubMed  CAS  Google Scholar 

  20. Van der Auwera I et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10(23):7965–7971

    Article  PubMed  Google Scholar 

  21. Koukourakis MI et al (2005) LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol 58(2):202–206

    Article  PubMed  CAS  Google Scholar 

  22. Mohammed RA et al (2007) Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer 96(7):1092–1100

    Article  PubMed  CAS  Google Scholar 

  23. Weidner N et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  PubMed  CAS  Google Scholar 

  24. Bevilacqua P et al (1995) Prognostic value of intratumoral microvessel density, a measure of tumor angiogenesis, in node-negative breast carcinoma–results of a multiparametric study. Breast Cancer Res Treat 36(2):205–217

    Article  PubMed  CAS  Google Scholar 

  25. Toi M et al (1993) Tumour angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 55(3):371–374

    Article  PubMed  CAS  Google Scholar 

  26. Uzzan B et al (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64(9):2941–2955

    Article  PubMed  CAS  Google Scholar 

  27. Madjd Z et al (2005) High expression of Lewis y/b antigens is associated with decreased survival in lymph node negative breast carcinomas. Breast Cancer Res 7(5):R780–R787

    Article  PubMed  CAS  Google Scholar 

  28. Elston CW, Ellis IO et al (1991): Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  PubMed  CAS  Google Scholar 

  29. Singletary SE, Connolly JL (2006): Breast cancer staging: working with the sixth edition of the AJCC cancer staging manual. CA Cancer J Clin 56(1):37–47

    Article  PubMed  Google Scholar 

  30. Galea MH et al (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 22(3):207–219

    Article  PubMed  CAS  Google Scholar 

  31. McShane LM et al (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  PubMed  Google Scholar 

  32. Zeng Y et al (2005) Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate 65(3):222–230

    Article  PubMed  CAS  Google Scholar 

  33. Koskinen WJ et al (2005) Lymphatic vessel density in vocal cord carcinomas assessed with LYVE-1 receptor expression. Radiother Oncol 77(2):172–175

    Article  PubMed  CAS  Google Scholar 

  34. Schoppmann SF et al (2001) Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res 21(4A):2351–2355

    PubMed  CAS  Google Scholar 

  35. Beasley NJ et al (2002) Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 62(5):1315–1320

    PubMed  CAS  Google Scholar 

  36. Soares AB et al (2007) Lymphatic vascular density and lymphangiogenesis during tumor progression of carcinoma ex-pleomorphic adenoma. J Clin Pathol 60(9):995–1000

    Article  PubMed  CAS  Google Scholar 

  37. Rudolph P et al (1999) Prognostic significance of Ki-67 and topoisomerase IIalpha expression in infiltrating ductal carcinoma of the breast. A multivariate analysis of 863 cases. Breast Cancer Res Treat 55(1):61–71

    Article  PubMed  CAS  Google Scholar 

  38. Potemski P et al (2006) Ki-67 expression in operable breast cancer: a comparative study of immunostaining and a real-time RT-PCR assay. Pathol Res Pract 202(7):491–495

    Article  PubMed  CAS  Google Scholar 

  39. van der Schaft DW et al (2007) Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Lett 254(1):128–136

    Article  PubMed  CAS  Google Scholar 

  40. Yamauchi C et al (2007) Accurate assessment of lymph vessel tumor emboli in invasive ductal carcinoma of the breast according to tumor areas, and their prognostic significance. Hum Pathol 38(2):247–259

    Article  PubMed  Google Scholar 

  41. Miyata Y et al (2006) Lymphangiogenesis and angiogenesis in bladder cancer: prognostic implications and regulation by vascular endothelial growth factors-A, -C, and -D. Clin Cancer Res 12(3 Pt 1):800–806

    Article  PubMed  CAS  Google Scholar 

  42. Stefansson IM, Salvesen HB, Akslen LA (2006) Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res 66(6):3303–3309

    Article  PubMed  CAS  Google Scholar 

  43. Sipos B et al (2004) Expression of lymphangiogenic factors and evidence of intratumoral lymphangiogenesis in pancreatic endocrine tumors. Am J Pathol 165(4):1187–1197

    PubMed  CAS  Google Scholar 

  44. Adams RH, Alitalo K et al (2007): Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  PubMed  CAS  Google Scholar 

  45. Maruyama K et al (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372

    Article  PubMed  CAS  Google Scholar 

  46. Kerjaschki D et al (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115(9):2316–2319

    Article  PubMed  CAS  Google Scholar 

  47. Yano A et al (2006) Glucocorticoids suppress tumor lymphangiogenesis of prostate cancer cells. Clin Cancer Res 12(20 Pt 1):6012–6017

    Article  PubMed  CAS  Google Scholar 

  48. Schoppmann SF et al (2002) Tumour-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956

    PubMed  CAS  Google Scholar 

  49. Weigelt B et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65(20):9155–9158

    Article  PubMed  CAS  Google Scholar 

  50. Hansen S et al (2000) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6(1):139–146

    PubMed  CAS  Google Scholar 

  51. Fox SB, Harris AL (2004) Histological quantitation of tumour angiogenesis. APMIS 112(7–8):413–430

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Rabab A. A. Mohammed is very grateful to the Egyptian government for funding her during this work. The authors are also grateful to Mrs. Kelly Huber and Miss Aula Ammar (University of Nottingham, University Hospitals, Department of Clinical Oncology) for their kind technical support and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart G. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammed, R.A.A., Ellis, I.O., Elsheikh, S. et al. Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications. Breast Cancer Res Treat 113, 261–273 (2009). https://doi.org/10.1007/s10549-008-9936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9936-1

Keywords

Navigation