Skip to main content

Advertisement

Log in

Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose We analyzed circulating tumor cells (CTC) in blood of metastatic breast cancer patients (n = 42) and determined the ability of this method to predict therapy response. Methods CTC from blood were analyzed before and during therapy for EpCAM, MUC1 and HER2 transcripts with the AdnaTest BreastCancer. The estrogen (ER) and progesterone (PR) receptor expression was assessed by RT-PCR. Results The overall detection rate for CTC was 52% (thereof 86% EpCAM; 86% MUC1; 32% HER2; 35% ER; 12% PR). CTC were ER, PR and HER2 negative in 45% (ER), 78% (PR) and 60% (HER-2) of patients with steroid receptor-positive tumors. 29% of patients with HER2-negative tumors had HER2-positive CTC. The test predicted therapy response in 78% of all cases. Persistence of CTC significantly correlated with shorter overall survival (P = 0.005). Conclusions Molecular profiling of CTC may offer superior prognostic information with regard to risk assessment for recurrence and predictive judgement of therapeutical regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldhirsch A, Glick JH, Gelber RD et al (2005) Meeting highlights: international expert consensus conference on the primary therapy of early breast cancer. Ann Oncol 16:1569–1583

    Article  PubMed  CAS  Google Scholar 

  2. Braun S, Hepp F, Sommer HL et al (1999) Tumor-antigen heterogeneity of disseminated breast cancer cells: implications for immunotherapy of minimal residual disease. Int J Cancer 84:1–5

    Article  PubMed  CAS  Google Scholar 

  3. Pantel K, Schlimok G, Braun S et al (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–24

    Article  PubMed  CAS  Google Scholar 

  4. Meng S, Tripathy D, Frenkel EP et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  5. Kasimir-Bauer S, Mayer S, Bojko P et al (2001) Survival of tumor cells in stem cell preparations and bone marrow of patients with high-risk or metastatic breast cancer after receiving dose-intensive or high-dose chemotherapy. Clin Cancer Res 7:1582–1588

    PubMed  CAS  Google Scholar 

  6. Braun S, Kentenich C, Janni W et al (2000) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18:80–86

    PubMed  CAS  Google Scholar 

  7. Wiedswang G, Borgen E, Schirmer C et al (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 118:2013–2019

    Article  PubMed  CAS  Google Scholar 

  8. Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 53:793–802

    Article  Google Scholar 

  9. Stathopoulou A, Vlachonikolis I, Mavroudis D et al (2002) Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 20:3404–3412

    Article  PubMed  CAS  Google Scholar 

  10. Giatromanolaki A, Koukourakis MI, Kakolyris S et al (2004) Assessment of highly angiogenic and disseminated in the peripheral blood disease in breast cancer patients predicts for resistance to adjuvant chemotherapy and early relapse. Int J Cancer 108:620–627

    Article  PubMed  CAS  Google Scholar 

  11. Gaforio J-J, Serrano M-J, Sanchez-Rovira P et al (2003) Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int J Cancer 107:984–990

    Article  PubMed  CAS  Google Scholar 

  12. Jotsuka T, Okumura Y, Nakano S et al (2004) Persistent evidence of circulating tumor cells detected by means of RT-PCR for CEA mRNA predicts early relapse: a prospective study in node-negative breast cancer. Surgery 135:419–426

    Article  PubMed  Google Scholar 

  13. Pierga J-Y, Bonneton Ch, Vincent-Salomon A et al (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 10:1392–1400

    Article  PubMed  CAS  Google Scholar 

  14. Benoy IH, Elst H, Philips M et al (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94:672–680

    PubMed  CAS  Google Scholar 

  15. Mehes G, Witt A, Kubista E et al (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159:17–20

    PubMed  CAS  Google Scholar 

  16. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  PubMed  CAS  Google Scholar 

  17. Cristofanilli M, Broglio KR, Guarneri V et al (2007) Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clin Breast Cancer 7(6):471–479

    Article  PubMed  Google Scholar 

  18. Hayes DF, Walker TM, Singh B et al (2002) Monitoring expression of HER-2 on circulating epithelial cells in patients with advanced breast cancer. Int J Oncol 21:1111–1117

    PubMed  CAS  Google Scholar 

  19. Bosma AJ, Weigelt B, Lambrechts AC et al (2002) Detection of circulating breast tumor cells by differential expression of marker genes. Clin Cancer Res 8:1871–1877

    PubMed  CAS  Google Scholar 

  20. Ring AE, Zabaglo L, Ormerod MG et al (2005) Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br J Cancer 92:906–912

    Article  PubMed  CAS  Google Scholar 

  21. Baker MK, Mikhitarian K, Osta W et al (2003) Molecular detection of breast cancer cells in the peripheral blood of advanced-stage breast cancer patients using multimarker real-time reverse transcription-polymerase chain reaction and a novel porous barrier density gradient centrifugation technology. Clin Cancer Res 9:4865–4871

    PubMed  CAS  Google Scholar 

  22. Hauch S, Zimmermann S, Lankiewicz S et al (2007) The clinical significance of circulating tumour cells in breast cancer and colorectal cancer patients. Anticancer Res (Greece) 27:1337–1341

    CAS  Google Scholar 

  23. Ellis IO, Schnitt SJ, Sastre-Garau X, Bussolati G, Tavassoli FA, Eusebi V (2003) Invasive breast carcinoma. In: Tavassoli FA, Devilee P (eds) World health organization classification of tumours. tumours of the breast and female genital organs. IARC Press, Lyon

    Google Scholar 

  24. Sobin LH, Wittekind C (2002) International union against cancer. TNM classification of malignant tumours, 6th edn. Wiley, New York

    Google Scholar 

  25. Lal P, Salazar PA, Hudis CA et al (2004) HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in situ hybridization: a single-institution experience of 2, 279 cases and comparison of dual-color and single-color scoring. Am J Clin Pathol 121:631–636

    Article  PubMed  Google Scholar 

  26. Demel U, Tilz GP, Foeldes-Papp Z et al (2004) Detection of tumour cells in the peripheral blood of patients with breast cancer. Development of a new sensitive and specific immunomolecular assay. J Exp Clin Cancer Res 23:465–468

    PubMed  CAS  Google Scholar 

  27. Zieglschmid V, Hollmann C, Gutierrez B et al (2005) Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Res 25:1803–1810

    PubMed  CAS  Google Scholar 

  28. Lankiewicz S, Rivero BG, Bocher O (2006) Quantitative real-time RT-PCR of disseminated tumor cells in combination with immunomagnetic cell enrichment. Mol Biotechnol (USA) 34(1):15–27

    Article  CAS  Google Scholar 

  29. Braun S, Schlimok G, Heumos I et al (2001) ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I–III breast cancer patients. Cancer Res 61:1890–1895

    PubMed  CAS  Google Scholar 

  30. Vincent-Salomon AJ, Couturier C, Nos X et al (2004) HER2 gene status assessment in micrometastatic cells in bone marrow (BM) of breast cancer patients by fluorescence in situ hybridization. J Clin Oncol 22:9520

    Google Scholar 

  31. Becker S, Becker-Pergola G, Fehm T et al (2005) HER2 expression on disseminated tumor cells from bone marrow of breast cancer patients. Anticancer Res 25:2171–2176

    PubMed  CAS  Google Scholar 

  32. Solomayer EF, Becker S, Pergola-Becker G et al (2006) Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res Treat 98(2):179–184

    Article  PubMed  CAS  Google Scholar 

  33. Italiano A, Saint-Paul MC, Caroli-Bosc FX et al (2005) Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites: biological and clinical implications. Ann Oncol 16(9):1503–1507

    Article  PubMed  CAS  Google Scholar 

  34. Reuben JM, Lee BN, Li C et al. (2007) Genomic of circulating tumor cells in metastatic breast cancer. J Clin Oncol ASCO annual meeting proceedings part I 25(18S):1002 (June 20 Supplement)

    Google Scholar 

  35. Fehm T, Morrison L, Saboorian H (2002) Patterns of aneusomy for three chromosomes in individual cells from breast cancer tumors. Breast Cancer Res Treat 75(3):227–239

    Article  PubMed  CAS  Google Scholar 

  36. Pachmann K, Oumar C, Kavallaris A et al (2008) Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol 26(8):1208–1215

    Article  PubMed  Google Scholar 

  37. Bast RC, Ravdin P, Hayes DF et al (2001) Update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 19(6):1865–1878

    PubMed  Google Scholar 

  38. Budd GT, Cristofanilli M, Ellis MJ et al. Circulating tumor cells versus imaging-predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409

  39. Hayes DF, Cristofanilli M, Budd GT et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14 Pt 1):4218–4224

    Article  PubMed  CAS  Google Scholar 

  40. McShane LM, Altman DG, Sauerbrei W et al (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Kasimir-Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewes, M., Aktas, B., Welt, A. et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 115, 581–590 (2009). https://doi.org/10.1007/s10549-008-0143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0143-x

Keywords

Navigation