Skip to main content

Advertisement

Log in

Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is a very heterogeneous disease, and markers for disease subtypes and therapy response remain poorly defined. For that reason, we employed a retrospective study in node-positive breast cancer to identify molecular signatures of gene expression correlating with metastatic free survival. Patients were primarily included in FEC100 (5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2 and cyclophosphamide 500 mg/m2) arms of two multicentric prospective adjuvant clinical trials (PACS01 and PEGASE01—FNCLCC cooperative group). Data from nylon microarrays containing 8,032 cDNA unique sequences, representing 5,776 distinct genes, have been used to develop a predictive model for treatment outcome. We obtained the gene expression profiles for 150 of these patients, and used stringent univariate selection techniques based on Cox regression combined with principal component analysis to identify a genomic signature of metastatic relapse after adjuvant FEC100 regimen. Most of the 14 selected genes have a clear role in breast cancer, carcinogenesis or chemotherapy resistance. Six genes have been previously described in other genomic studies (UBE2C, CENPF, C16orf61 [DC13], STMN1, CCT5 and BCL2A1). Furthermore, we showed the interest of combining transcriptomic data with clinical data into a clinicogenomic model for patients subtyping. The described model adds predictive accuracy to that provided by the well-established Nottingham prognostic index or by our genomic signature alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

CGM:

clinicogenomic model

CI:

confidence interval

GS:

genomic signature

HR:

hazard ratio

NPI:

Nottingham prognostic index

MFS:

metastatic free survival

MR:

metastatic relapse

PCA:

principal component analysis

SBR:

Scarff–Bloom–Richardson

References

  1. Haybittle JL, Blamey RW, Elston CW et al (1982) A prognostic index in primary breast cancer. Br J Cancer 45:361–366

    PubMed  CAS  Google Scholar 

  2. Goldhirsch A, Glick JH, Gelber RD et al (1998) Meeting highlights: international consensus panel on the treatment of primary breast cancer. J Natl Cancer Inst 90:1601–1608

    Article  PubMed  CAS  Google Scholar 

  3. Eifel P, Axelson JA, Costa J et al (2001) National institutes of health consensus development conference statement: adjuvant therapy for breast cancer. J Natl Cancer Inst 93:979–989

    Article  PubMed  CAS  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  6. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–535

    Article  CAS  Google Scholar 

  7. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  8. Pawitan Y, Bjöhle J, Amler L et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964

    Article  PubMed  CAS  Google Scholar 

  9. Sotiriou C, Powles TJ, Dowsett M et al (2002) Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res 4:R3

    Article  PubMed  Google Scholar 

  10. Buchholz TA, Stivers D, Stec J et al (2002) Global gene expression changes during neoadjuvant chemotherapy of human breast cancer. Cancer 8:461–468

    Article  Google Scholar 

  11. Chang JC, Wooten EC, Tsimelzon A et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362:362–369

    Article  PubMed  CAS  Google Scholar 

  12. Ayers M, Symmans WF, Stec J et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel/FAC chemotherapy in breast cancer. J Clin Oncol 22:2284–2293

    Article  PubMed  CAS  Google Scholar 

  13. Gianni L (2004) Gene expression profiles of paraffin-embedded core biopsy tissue predict response to chemotherapy in patients with locally advanced breast cancer. Proc Am Soc Clin Oncol 22:501 (Abstract)

    Google Scholar 

  14. Millour M, Charbonnel C, Magrangeas F et al (2006) Gene expression profiles discriminate between pathologic complete response and resistance to neoadjuvant FEC100 in breast cancer. Cancer Genomics and Proteomics 3:89–96

    CAS  Google Scholar 

  15. Bonneterre J, Roché H, Kerbrat P et al (2005) Epirubicin increases long-term survival in adjuvant chemotherapy of patients with poor-prognosis, node-positive, early breast cancer: 10-year follow-up results of the french adjuvant study group 05 randomized trial. J Clin Oncol 23:2686–2693

    Article  PubMed  CAS  Google Scholar 

  16. Trudeau M, Charbonneau F, Gelman K et al (2005) Selection of adjuvant chemotherapy for treatment of node-positive breast cancer. Lancet Oncol 6:886–898

    Article  PubMed  CAS  Google Scholar 

  17. Roché H, Viens P, Biron P et al (2003) High-dose chemotherapy for breast cancer: the French PEGASE experience. Cancer Control 10:42–47

    PubMed  Google Scholar 

  18. Roché H, Fumoleau P, Spielmann M et al (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the PACS01 trial. J Clin Oncol 24:5664–5671

    Article  PubMed  CAS  Google Scholar 

  19. Magrangeas F, Nasser V, Avet-Loiseau H et al (2003) Gene expression profiling of multiple myeloma reveals molecular portraits in realtion to the pathogenesis of the disease. Blood 101:4998–5006

    Article  PubMed  CAS  Google Scholar 

  20. Nevins JR, Huang ES, Dressman H et al (2003) Towards integrated clinicogenomic models for personalized medecine: combinig gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet 12:R153–R157

    Article  PubMed  CAS  Google Scholar 

  21. Simon R (2005) Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 23:7332–7341

    Article  PubMed  CAS  Google Scholar 

  22. Eden P, Ritz C, Rose C et al (2004) “Good old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 40:1837–1841

    Article  PubMed  CAS  Google Scholar 

  23. Chirgwin JM, Przybyla AE, MacDonald RJ et al (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  24. Simon R, Radmacher MD, Dobbin K et al (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18

    Article  PubMed  CAS  Google Scholar 

  25. Todd JH, Dowle CS, Williams MR (1987) Confirmation of prognostic index in primary breast cancer. Br J Cancer 56:489–492

    PubMed  CAS  Google Scholar 

  26. Galea MH, Blamey RW, Elston CE et al (1992) The Nottingham prognostic index in primary breast cancer. Breast Cancer Res Treat 22:207–219

    Article  PubMed  CAS  Google Scholar 

  27. Okamoto Y, Ozaki T, Miyazaki K et al (2003) UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res 6:4167–4173

    Google Scholar 

  28. Wagner KW, Sapinoso LM, El-Rifai W et al (2004) Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene 23:6621–6629

    Article  PubMed  CAS  Google Scholar 

  29. Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979

    Article  PubMed  CAS  Google Scholar 

  30. Rape M, Kirschner M (2004) Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432:588–595

    Article  PubMed  CAS  Google Scholar 

  31. Ricolleau G, Charbonnel C, Lodé L et al (2006) Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics 6.06:1963–1975

    Article  CAS  Google Scholar 

  32. Hussein D, Taylor S (2002) Farnesylation of Cenp-F is required for G2/M progression and degradadtion after mitosis. J Cell Sci 115:3403–3414

    PubMed  CAS  Google Scholar 

  33. O’Brien SL, Fagan A, Fox EJP et al (2007) CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. Int J Cancer 120:1434–1443

    Article  PubMed  CAS  Google Scholar 

  34. Bièche I, Lachkar S, Becette V et al (1998) Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer 78:701–709

    PubMed  Google Scholar 

  35. Curmi PA, Noguès C, Lachkar S et al (2000) Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer 82:142–150

    Article  PubMed  CAS  Google Scholar 

  36. Brattsand G (2000) Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer 83:311–318

    Article  PubMed  CAS  Google Scholar 

  37. Oishi Y, Nagasaki K, Miyata S et al (2007) Functional pathway characterized by gene expression analysis of supraclavicular lymph node metastasis-positive breast cancer. J Hum Genet 52:271–279

    Article  PubMed  CAS  Google Scholar 

  38. Barrett M, Pritchard D, Palanca-Wessels C et al (2003) Molecular phenotype of spontaneously arising 4N (G2-tetraploid) intermediates of neoplastic progression in Barrett’s esophagus. Cancer Res 63:4211–4217

    PubMed  CAS  Google Scholar 

  39. Rosty C, Sheffer M, Tsafir D et al (2005) Identification of a proliferative gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma. Oncogene 24:7094–7104

    Article  PubMed  CAS  Google Scholar 

  40. Milyasky M, Tabach Y, Shats I et al (2005) Transcriptional programs following genetic alterations in p53, INK4A, and H-RAS genes along defined stages of malignant transformation. Cancer Res 65:4530–4543

    Article  Google Scholar 

  41. Tabach Y, Milyavsky M, Shats I et al (2005) The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Mol Syst Biol msb4100030-E1-E15

  42. Dai H, van’t Veer L, Lamb J et al (2005) A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer. Cancer Res 6:4059–4066

    Article  Google Scholar 

  43. Whitfield ML, George LK, Grant GD et al (2006) Common markers of proliferation. Nature Rev 6:99–106

    Article  CAS  Google Scholar 

  44. Sinha P, Hutter G, Kottgen E et al (1999) Search for novel proteins involved in the devlopment of chemoresistance in colorectal cancer and fibrosarcoma cells in vitro using two-dimensional electrophoresis, mass spectrometry and microsequencing. Electrophoresis 14:2961–2969

    Article  Google Scholar 

  45. Ludwig A, Dietel M, Lage M (2002) Identification of differentially expressed genes in classical and atypical multidrug-resistant gastric carcinoma cells. Anticancer Res 6A:3213–3221

    Google Scholar 

  46. Jiang A, Zhang LX, Yue W et al (2003) Establishment of a human nasopharyngeal carcinoma drug-resistant cell line CNE2/DDP and screening of drug-resistant genes. Ai Zheng 4:337–345

    Google Scholar 

  47. Ooe A, Kato K, Noguchi S (2007) Possible involvement of CCT5, RGS3, and YKT6 genes up-regulated in p53-mutated tumors in resistance to docetaxel in human breast cancers. Breast Cancer Res Treat 101:305–315

    Article  PubMed  CAS  Google Scholar 

  48. Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24:1656–1664

    Article  PubMed  CAS  Google Scholar 

  49. Wang CY, Guttridge DC, Mayo MW et al (1999) NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19:5923–5929

    PubMed  CAS  Google Scholar 

  50. Cheng Q, Ho HL, Li Y et al (2000) Upregulation of Bcl-x and Bfl-1 as a potential mechanism of chemoresistance, which can be overcome by NF-κB inhibition. Oncogene 19:4936–4940

    Article  PubMed  CAS  Google Scholar 

  51. Brown D, Alexander B, Sittman DB (1996) Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Res 24:486–493

    Article  PubMed  CAS  Google Scholar 

  52. Gunjan A, Alexander B, Sittman D et al (1999) Effects of H1 histone variant overexpression on chromatin structure. J Biol Chem 274:37950–37956

    Article  PubMed  CAS  Google Scholar 

  53. Alami R, Fan Y, Pack S et al (2003) Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci USA 100:5920–5925

    Article  PubMed  CAS  Google Scholar 

  54. Yanagawa T, Funasaka T, Tsutsumi S et al (2004) Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocrine-related Cancer 11:749–759

    Article  PubMed  CAS  Google Scholar 

  55. Jiang WG, Raz A, Douglas-Jones A et al (2006) Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem 54:231–241

    Article  PubMed  CAS  Google Scholar 

  56. Pittman J, Huang E, Dressman H et al (2004) Integrated modelling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci USA 101:8431–8436

    Article  PubMed  CAS  Google Scholar 

  57. Kattan MW (2004) Evaluating a new marker’s predictive contribution. Clin Cancer Res 10:822–824

    Article  PubMed  CAS  Google Scholar 

  58. Sun Y, Goodison S, Li J et al (2007) Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23:30–37

    Article  PubMed  CAS  Google Scholar 

  59. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  60. Ransohoff DE (2005) Bias as a threat to the validity of cancer molecular-marker research. Nat Rev 5:142–149

    CAS  Google Scholar 

  61. Brenton JD, Carey LA, Ahmed AA et al (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360

    Article  PubMed  CAS  Google Scholar 

  62. West M, Ginsburg GS, Huang AT et al (2006) Embracing the complexity of genomic data for personalized medicine. Genome Res 16:559–566

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Martin, E. Ollivier and N. Roi for technical assistance.

This work was supported by funds from PFIZER-France pharmaceutical company, the Ligue Régionale contre le Cancer de Loire Atlantique, Cancéropôle Grand Ouest and by generous gifts from Lyon’s Clubs-La Baule/Pays Guérandais and Nantes Pays de Loire, and different regional associations of bowls players. A part of the tissues used in this publication was provided by IRCNA tumor bank, Nantes, funded by the Institut National du Cancer and the Cancéropôle Grand Ouest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Jézéquel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campone, M., Campion, L., Roché, H. et al. Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen. Breast Cancer Res Treat 109, 491–501 (2008). https://doi.org/10.1007/s10549-007-9673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9673-x

Keywords

Navigation