Skip to main content
Log in

Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

p53 induces the transcription of genes that negatively regulate progression of the cell cycle in response to DNA damage or other cellular stressors, and thus participates in maintaining genome stability. Under stress conditions, p53 must be activated to prohibit the replication of cells containing damaged DNA. However, in normal, non-stressed cells, p53 activity must be inhibited. Previous studies have demonstrated that p53 transcription is activated before or during early S-phase in cells progressing from G0/G1 into S-phase. Since this is not what would be predicted from a gene involved in growth arrest and apoptosis, in this study, we provide evidence that this induction occurs to provide sufficient p53 mRNA to ensure a rapid response to DNA damage before exiting S-phase. When comparing exponentially growing Swiss3T3 cells to those synchronized to enter S-phase simultaneously and treated with the DNA damaging agent camptothecin, we found that with cells in S-phase, p53 protein levels increased earlier, Bax and p21 transcription was activated earlier and to a greater extent and apoptosis occurred earlier and to a greater extent. These findings are consistent with p53 transcription being induced in S-phase to provide for a rapid DNA-damage response during S-phase of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316

    Article  PubMed  CAS  Google Scholar 

  2. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  PubMed  CAS  Google Scholar 

  3. Agarwal ML, Agarwal A, Taylor WR, Chernova O, Sharma Y, Stark GR (1998) A p53- dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation for pyrimidine nucleotides. Proc Natl Acad Sci USA 95:14775–14780

    Article  PubMed  CAS  Google Scholar 

  4. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  5. Attardi LD, Jacks T (1999) The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 55:48–63

    Article  PubMed  CAS  Google Scholar 

  6. Reich NC, Levine AJ (1984) Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308:199–201

    Article  PubMed  CAS  Google Scholar 

  7. Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W (1995) Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 14:4442–4449

    PubMed  CAS  Google Scholar 

  8. Oren M, Rotter V (1999) Introduction: p53–the first twenty years. Cell Mol Life Sci 5:9–11

    Article  Google Scholar 

  9. Barak Y, Juven T, Haffner R, Oren M (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12:461–468

    PubMed  CAS  Google Scholar 

  10. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951

    Article  PubMed  CAS  Google Scholar 

  11. Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322

    Article  PubMed  CAS  Google Scholar 

  12. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  13. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 10:724–737

    Article  Google Scholar 

  14. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292

    Article  PubMed  CAS  Google Scholar 

  15. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  16. Gottifredi V, McKinney K, Poyurovsky MV, Prives C (2004) Decreased p21 levels are required for efficient restart of DNA synthesis after S phase block. J Biol Chem 279:5802–5810

    Article  PubMed  CAS  Google Scholar 

  17. Janus F, Albrechtsen N, Dornreiter I, Wiesmüller L, Grosse F, Deppert W (1999) The dual role model for p53 in maintaining genomic integrity. Cell Mol Life Sci 55:12–27

    Article  PubMed  CAS  Google Scholar 

  18. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    Article  PubMed  CAS  Google Scholar 

  19. Reed JC, Alpers JD, Nowell PC, Hoover RG (1986) Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci USA 83:3982–3986

    Article  PubMed  CAS  Google Scholar 

  20. Ginsberg D, Oren M, Yaniv M, Piette J (1990) Protein-binding elements in the promoter region of the mouse p53 gene. Oncogene 5:1285–1290

    PubMed  CAS  Google Scholar 

  21. Boggs K, Reisman D (2006) Increased p53 transcription prior to DNA synthesis is regulated through a novel regulatory element within the p53 promoter. Oncogene 25:555–565

    PubMed  CAS  Google Scholar 

  22. Horwitz SB, Chang CK, Grollman AP (1971) Studies on camptothecin: I. Effects on nucleic acid and protein synthesis. Mol Pharmacol 7:632–644

    PubMed  CAS  Google Scholar 

  23. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    PubMed  CAS  Google Scholar 

  24. Mei Y, Xie C, Xie W, Tian X, Li M, Wu M (2007) Noxa/Mcl-1 balance regulates susceptibility of cells to camptothecin-induced apoptosis. Neoplasia 9:871–881

    Article  PubMed  CAS  Google Scholar 

  25. Fink R, Fink K (1962) Utilization of radiocarbon from thymidine and other precursors of ribonucleic acid in Neurospora crassa. J Biol Chem 237:2289–2290

    PubMed  CAS  Google Scholar 

  26. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A et al (2001) Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276:15164–15173

    Article  PubMed  CAS  Google Scholar 

  27. Boggs K, Reisman D (2007) The transcription factor C/EBP is essential for cell cycle regulation of the p53 gene. J. Biol. Chem. 282:7982–7990

    Article  PubMed  CAS  Google Scholar 

  28. Polson A, Takahashi P, Reisman D (2010) Chromatin Immunoprecipitation (ChIP) Analysis Demonstrates Coordinated Binding of Two Transcription Factors to the Promoter of the p53 Tumor Suppressor Gene. Cell Biol Int 34:883–891

    Article  PubMed  CAS  Google Scholar 

  29. Offer H et al (2001) p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res 61:88–96

    PubMed  CAS  Google Scholar 

  30. Jin S, Levine AJ (2001) The p53 functional circuit. J Cell Sci 114:4139–4140

    PubMed  CAS  Google Scholar 

  31. Firlej V, Bocquet B, Desbiens X, de Launoit Y, Chotteau-Lelièvre A (2005) Pea3 transcription factor cooperates with USF-1 in regulation of the murine bax transcription without binding to an Ets-binding site. J Biol Chem 280:887–898

    Article  PubMed  CAS  Google Scholar 

  32. Gottifredi V, Shieh S, Taya Y, Prives C (2001) p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci USA 98:1036–1041

    Article  PubMed  CAS  Google Scholar 

  33. Zhang XP, Lui F, Wang W (2010) Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. J Biol Chem 285:31571–31580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Research Infrastructure Networks (BRIN), and the South Carolina IDEA-Collaborative Research Program.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Reisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, P., Polson, A. & Reisman, D. Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle. Apoptosis 16, 950–958 (2011). https://doi.org/10.1007/s10495-011-0623-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0623-z

Keywords

Navigation