Skip to main content
Log in

Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Numerous studies have recently focused on the anticarcinogenic, antimutagenic, or chemopreventive activities of the main pungent component of red pepper, capsaicin (N-vanillyl-8-methyl-1-nonenamide). We have previously shown that, in the androgen-independent prostate cancer PC-3 cells, capsaicin inhibits cell growth and induces apoptosis through reactive oxygen species (ROS) generation [Apoptosis 11 (2006) 89–99]. In the present study, we investigated the signaling pathways involved in the antiproliferative effect of capsaicin. Here, we report that capsaicin apoptotic effect was mediated by ceramide generation which occurred by sphingomyelin hydrolysis. Using siRNA, we demonstrated that N-SMase expression is required for the effect of capsaicin on prostate cell viability. We then investigated the role of MAP kinase cascades, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in the antiproliferative effect of capsaicin, and we confirmed that capsaicin could activate ERK and JNK but not p38 MAPK. Pharmacological inhibition of JNK kinase, as well as inhibition of ROS by the reducing agent N-acetylcysteine, prevented ceramide accumulation and capsaicin-induced cell death. However, inhibition of ceramide accumulation by the SMase inhibitor D609 did not modify JNK activation. These data reveal JNK as an upstream regulator of ceramide production. Capsaicin-promoted activation of ERK was prevented with all the inhibitors tested. We conclude that capsaicin induces apoptosis in PC-3 cells via ROS generation, JNK activation, ceramide accumulation, and second, ERK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carson CC (2006) Carcinoma of the prostate: overview of the most common malignancy in men. N C Med J 67:122–127

    PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2007 CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  3. Wang G, Reed E, Li QQ (2004) Apoptosis in prostate cancer: progressive and therapeutic implications. Int J Mol Med 14:23–34

    PubMed  CAS  Google Scholar 

  4. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    PubMed  CAS  Google Scholar 

  5. Tuoya, Baba N, Shimoishi Y, Murata Y, Tada M, Koseki M, Takahata K (2006) Apoptosis induction by dohevanil, a DHA substitutive analog of capsaicin, in MCF-7 cells. Life Sci 78:515–519

    Article  CAS  Google Scholar 

  6. Jung MY, Kang HJ, Moon A (2001) Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett 165:139–145

    Article  PubMed  CAS  Google Scholar 

  7. Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Yoshino M (2005) Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res 51:175–183

    Article  PubMed  CAS  Google Scholar 

  8. Tsou MF, Lu HF, Chen SC, Wu LT, Chen YS, Kuo HM, Lin SS, Chung JG (2006) Involvement of Bax, Bcl-2, Ca2+ and caspase-3 in capsaicin-induced apoptosis of human leukemia HL-60 cells. Anticancer Res 26:1965–1971

    PubMed  CAS  Google Scholar 

  9. Wu CC, Lin JP, Yang JS, Chou ST, Chen SC, Lin YT, Lin HL, Chung JG (2006) Capsaicin induced cell cycle arrest and apoptosis in human esophagus epidermoid carcinoma CE 81T/VGH cells through the elevation of intracellular reactive oxygen species and Ca2+ productions and caspase-3 activation. Mutat Res 601:71–82

    PubMed  CAS  Google Scholar 

  10. Sánchez AM, Sánchez MG, Malagarie-Cazenave S, Olea N, Díaz-Laviada I (2006) Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 11:89–99

    Article  PubMed  CAS  Google Scholar 

  11. Reinehr R, Becker S, Braun J, Eberle A, Grether-Beck S, Haussinger D (2006) Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J Biol Chem 281:23150–23166

    Article  PubMed  CAS  Google Scholar 

  12. Andrieu-Abadie N, Levade T (2002) Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta 1585:126–134

    PubMed  CAS  Google Scholar 

  13. Pettus BJ, Chalfant CE, Hannun Y (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    PubMed  CAS  Google Scholar 

  14. Levade T, Malagarie-Cazenave S, Gouaze V, Segui B, Tardy C, Betito S, Andreieu-Abadie N, Culliver O (2002) Ceramide in apoptosis: a revisited role. Neurochem Res 27:601–607

    Article  PubMed  CAS  Google Scholar 

  15. Bielawska A, Perry DK, Hannun YA (2001) Determination of ceramides and diglycerides by the diglyceride kinase assay. Anal Biochem 298:141–150

    Article  PubMed  CAS  Google Scholar 

  16. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  17. Malagarie-Cazenave S, Ségui B, Lévêque S, Garcia V, Carpentier S, Altié M, Brouchet A, Gouazé V, Andrieu-Abadie N, Barreira Y, Benoist H, Levade T (2004) Role of FAN in tumor necrosis factor-alpha and lipopolysaccharide-induced interleukin-6 secretion and lethality in d-galactosamine-sensitized mice. Biol Chem 279:18648–18655

    Article  CAS  Google Scholar 

  18. Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA (2006) The extended family of neutral aphingomyelinases. Biochemistry 45:11247–11256

    Article  PubMed  CAS  Google Scholar 

  19. Sells SF, Wood DP (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5:457–466

    PubMed  CAS  Google Scholar 

  20. Goswami A, Ranganathan P, Rangnekar VM (2006) The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res 66:2889–2892

    Article  PubMed  CAS  Google Scholar 

  21. Srinivasan S, Ranga RS, Burikhanov R, Han S, Chendil D (2007) Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67:246–253

    Article  PubMed  CAS  Google Scholar 

  22. Mori A, Lehmann S, O’Kelly J, Kumagai T, Desmond J, Pervan M, McBride WH, Kizaki M, Koeffler HP (2006) Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 66:3222–3229

    Article  PubMed  CAS  Google Scholar 

  23. Sultan I, Senkal CE, Ponnusamy S, Bielawski J, Szulc Z, Bielawska A, Hannun YA, Ogretmen B (2006) Regulation of the sphingosine-recycling pathway for ceramide generation by oxidative stress, and its role in controlling c-Myc/Max function. Biochem J 393:513–521

    Article  PubMed  CAS  Google Scholar 

  24. Won JS, Singh I (2006) Sphingolipid signaling and redox regulation. Free Radic Biol Med 40:1875–1888

    Article  PubMed  CAS  Google Scholar 

  25. Navas P, Villalba JM, Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 7 Suppl 1:S34–S30

    Google Scholar 

  26. Clarke CJ, Hannun YA (2006) Neutral sphingomyelinases and nSMase2: bridging the gaps. Biochim Biophys Acta 1758:1893–1901

    Article  PubMed  CAS  Google Scholar 

  27. De Luca T, Morré DM, Zhao H, Morré DJ (2005) NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and aphingosine-1 phosphate levels accompanying G1 arrest and apoptosis. BioFactors 25:43–46

    PubMed  Google Scholar 

  28. Morre J, Chueh P, Morré DM (1995) Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci USA 92:1831–1835

    Article  PubMed  CAS  Google Scholar 

  29. Shida Y, Igawa T, Hakariya T, Sakai H, Kanetake H (2007) p38 MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion. Biochem Biophys Res Commun 353:744–749

    Article  PubMed  CAS  Google Scholar 

  30. Ricote M, García-Tuñón I, Bethencourt F, Fraile B, Onsurbe P, Paniagua R, Royuela M (2006) The p38 transduction pathway in prostatic neoplasia. J Pathol 208:401–407

    Article  PubMed  CAS  Google Scholar 

  31. Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25:6731–6748

    Article  PubMed  CAS  Google Scholar 

  32. Shen H, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939

    Article  PubMed  CAS  Google Scholar 

  33. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  PubMed  CAS  Google Scholar 

  34. Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319:991–997

    Article  PubMed  CAS  Google Scholar 

  35. Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  PubMed  CAS  Google Scholar 

  36. Tanel A, Averill-Bates DA (2006) P38 and ERK mitogen-activated protein kinases mediate acrolein-induced apoptosis in Chinese hamster ovary cells. Cell Signal 19(5):968–977

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275:39435–39443

    Article  PubMed  CAS  Google Scholar 

  38. Woessmann W, Chen X, Borkhardt A (2002) Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother Pharmacol 50:397–404

    Article  PubMed  CAS  Google Scholar 

  39. Choi BK, Choi CH, Oh HL, Kim YK (2004) Role of ERK activation in cisplatin-induced apoptosis in A172 human glioma cells. Neurotoxicology 25:915–924

    Article  PubMed  CAS  Google Scholar 

  40. Jeon ES, Lee MJ, Sung SM, Kim JH (2007) Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem 100:1536–1547

    Article  PubMed  CAS  Google Scholar 

  41. Sheu LF, Young ZH, Lee WC, Chen YF, Kao WY, Chen A (2007) STI571 sensitizes nasopharyngeal carcinoma cells to cisplatin: sustained activation of ERK with improved growth inhibition. Int J Oncol 30:403–411

    PubMed  CAS  Google Scholar 

  42. Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK (2006) Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain. Neurotoxicology 27:31–38

    Article  PubMed  CAS  Google Scholar 

  43. Gurumurthy S, Rangnekar VM (2004) Par-4 inducible apoptosis in prostate cancer cells. J Cell Biochem 91:504–512

    Article  PubMed  CAS  Google Scholar 

  44. Bieberich E (2004) Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21:315–327

    Article  PubMed  CAS  Google Scholar 

  45. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the collaboration of Unidad de Cultivos from Universidad de Alcalá. This study was supported by grants from the Spanish Ministerio de Educación y Ciencia (SAF2005-00602), from UAH-CAM (CCG06-UAH/SAL-0562) and from Comunidad de Madrid (S-SAL-0261-2006). AMS and SMC are fellows from Spanish Ministerio de Educación y Ciencia. NO and DV have a fellowship from University of Alcalá.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Díaz-Laviada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, A.M., Malagarie-Cazenave, S., Olea, N. et al. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 12, 2013–2024 (2007). https://doi.org/10.1007/s10495-007-0119-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0119-z

Keywords

Navigation