Skip to main content
Log in

Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Plasma membrane potassium (K+) channels are required for tumor cell proliferation and apoptosis. However, the signal transduction mechanisms underlying K+ channel-dependent tumor cell proliferation or apoptosis remains elusive. Using HeLa and A2780 cells as study models, we tested the hypothesis that apoptotic proteins are linked with K+ channel-dependent tumor cell cycle and apoptosis. The patch-clamping study using the whole-cell mode revealed two components of voltage-gated outward K+ currents: one is sensitive to either tetraethylammonium (TEA) or tetrandrine (Tet), a maxi-conductance Ca2+-activated K+ (BK) channel blocker, and the other is sensitive to 4-aminopyridine (4-AP), a delayed rectifier K+ channel blocker. MTT and flow cytometry assays showed that TEA, Tet, or iberiotoxin (Ibtx), a selective BK channel blocker, inhibited HeLa and A2780 cell proliferation in a dose-dependent manner with G1 phase arrest. Pretreatment with TEA or Tet also induced apoptosis in HeLa and A2780 cells. However, glibenclamide (Gli), an ATP-sensitive K+ channel blocker, did not influence K+ currents, proliferation or apoptosis. Western blot analyses showed that while pretreatment of TEA and Tet produced an increase in expressions of p53, p21, and Bax, pretreatment of these two agents led to a decrease in expressions of heat shock protein (hsp)90α, hsp90β, and hsp70. Our results indicate that the blockade of BK channels results in tumor cell apoptosis and cycle arrest at G1 phase, and the transduction pathway underlying the anti-proliferative effects is linked to the increased expression of apoptotic protein p53 and the decreased expression of its chaperone proteins hsp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    Article  PubMed  CAS  Google Scholar 

  2. Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286

    Article  PubMed  CAS  Google Scholar 

  3. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  PubMed  CAS  Google Scholar 

  4. Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F, Stuhmer W (2005) Role of voltage-gated potassium channels in cancer. J Membr Biol 205:115–124

    Article  PubMed  CAS  Google Scholar 

  5. Lang F, Foller M, Lang KS et al (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  PubMed  CAS  Google Scholar 

  6. Wang L, Zhou P, Craig RW, Lu L (1999) Protection from cell death by mcl-1 is mediated by membrane hyperpolarization induced by K+ channel activation. J Membr Biol 172:113–120

    Article  PubMed  CAS  Google Scholar 

  7. Plummer H, Yu Q, Cakir Y, Schuller H (2004) Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines. BMC Cancer 4:93–103

    Article  PubMed  CAS  Google Scholar 

  8. Liu SI, Chi CW, Lui WY et al (1998) Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim Biophys Acta 1368:256–266

    Article  PubMed  CAS  Google Scholar 

  9. Liu X, Chang Y, Reinhart PH, Sontheimer H, Chang Y (2002) Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 22:1840–1849

    PubMed  CAS  Google Scholar 

  10. Huang MH, Wu SN, Chen CP, Shen AY (2002) Inhibition of Ca2+-activated and voltage-dependent K+ currents by 2-mercaptophenyl-1,4-naphthoquinone in pituitary GH3 cells: contribution to its antiproliferative effect. Life Sci 70:1185–1203

    Article  PubMed  CAS  Google Scholar 

  11. Jager H, Dreker T, Buck A, et al (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638

    Article  PubMed  Google Scholar 

  12. Malhi H, Irani AN, Rajvanshi P et al (2000) KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting J Biol Chem 275:26050–26057

    Article  PubMed  CAS  Google Scholar 

  13. Ouadid-Ahidouch H, Chaussade F, Roudbaraki M et al (2000) KV1.1 K+ channels identification in human breast carcinoma cells: involvement in cell proliferation. Biochem Biophys Res Commun 278:272–277

    Article  PubMed  CAS  Google Scholar 

  14. Pardo LA, del Camino D, Sanchez A et al (1999) Oncogenic potential of EAG K(+) channels. Embo J 18:5540–7

    Article  PubMed  CAS  Google Scholar 

  15. Wang H, Zhang Y, Cao L et al (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    PubMed  CAS  Google Scholar 

  16. Crociani O, Guasti L, Balzi M et al (2003) Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 278:2947–2955

    Article  PubMed  CAS  Google Scholar 

  17. Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71:11–30

    Article  PubMed  CAS  Google Scholar 

  18. Wu SN, Lo YK, Li HF, Shen AY (2001) Functional coupling of voltage-dependent L-type Ca2+ current to Ca2+-activated K+ current in pituitary GH3 cells. Chin J Physiol 44:161–167

    PubMed  Google Scholar 

  19. Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164

    Article  PubMed  CAS  Google Scholar 

  20. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P et al (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol 287:C125–C134

    Article  PubMed  CAS  Google Scholar 

  21. Ransom CB, Sontheimer H (2001) BK channels in human glioma cells. J Neurophysiol 85:790–803

    PubMed  CAS  Google Scholar 

  22. Ransom CB, Liu X, Sontheimer H (2002) BK channels in human glioma cells have enhanced calcium sensitivity. Glia 38:281–291

    Article  PubMed  Google Scholar 

  23. Weaver AK, Liu X, Sontheimer H (2004) Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J Neurosci Res 78:224–234

    Article  PubMed  CAS  Google Scholar 

  24. DeFilippis RA, Goodwin EC, Wu L, DiMaio D (2003) Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 77:1551–1563

    Article  PubMed  CAS  Google Scholar 

  25. Ouadid-Ahidouch H, Roudbaraki M, Ahidouch A, Delcourt P (2004) Prevarskaya N Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochem Biophys Res Commun 316:244–251

    Article  PubMed  CAS  Google Scholar 

  26. Akar F, Uydes-Dogan BS, Buharalioglu CK et al (1999) Protective effect of cromakalim and diazoxide, and proulcerogenic effect of glibenclamide on indomethacin-induced gastric injury. Eur J Pharmacol 374:461–470

    Article  PubMed  CAS  Google Scholar 

  27. Chrabi A, Horisberger JD (1999) Stimulation of epithelial sodium channel activity by the sulfonylurea glibenclamide. J Pharmacol Exp Ther 290:341–347

    PubMed  CAS  Google Scholar 

  28. Wang G, Lemos JR (1992) Tetrandrine blocks a slow, large-conductance, Ca2+-activated potassium channel besides inhibiting a non-inactivating Ca2+ current in isolated nerve terminals of the rat neurohypophysis. Pflugers Arch 421:558–565

    Article  PubMed  CAS  Google Scholar 

  29. Wang G, Lemos JR (1995) Tetrandrine: a new ligand to block voltage-dependent Ca2+ and Ca2+-activated K+ channels. Life Sci 56:295–306

    Article  PubMed  CAS  Google Scholar 

  30. Wang G, Lemos JR, Iadecola C (2004) Herbal alkaloid tetrandrine: fron an ion channel blocker to inhibitor of tumor proliferation. Trends Pharmacol Sci 25:120–123

    Article  PubMed  CAS  Google Scholar 

  31. Chen YJ (2002) Potential role of tetrandrine in cancer therapy. Acta Pharmacol Sin 23:1102–1106

    PubMed  CAS  Google Scholar 

  32. Jin S, Levine AJ (2001) The p53 functional circuit. J Cell Sci 114:4139–4140

    PubMed  CAS  Google Scholar 

  33. Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: 25 years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307

    Article  PubMed  CAS  Google Scholar 

  34. Zamzami N, Kroemer G (2005) p53 in apoptosis control: an introduction. Biochem Biophys Res Commun 331:685–687

    Article  PubMed  CAS  Google Scholar 

  35. O’Connor PM, Jackman J, Bae I et al (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57:4285–4300

    PubMed  CAS  Google Scholar 

  36. Franco-Gou R, Rosello-Catafau J, Casillas-Ramirez A, Massip-Salcedo M, Rimola A, Calvo N, Bartrons R, Peralta C (2006) how ischaemic preconditioning protects small liver grafts. J Pathol 208:62–73

    Article  PubMed  CAS  Google Scholar 

  37. Shinohara T, Takahashi N, Ooie T, Ichinose M, Hara M, Yonemochi H, Saikawa T, Yoshimatsu H (2004) Estrogen inhibits hyperthermia-induced expression of heat-shock protein 72 and cardioprotection against ischemia/reperfusion injury in female rat heart. Mol Cell Cardiol 37:1053–1061

    Article  CAS  Google Scholar 

  38. Kiang JG, Gist ID, Tsokos GC (2000) Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells. Mol Cell Biochem 204:169–178

    Article  PubMed  CAS  Google Scholar 

  39. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424

    Article  PubMed  CAS  Google Scholar 

  40. Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumour suppressor protein. Embo J 20:4634–4638

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation of China (No. 30571950, 30500596; 30626029; 30672227) and the “973” Program of China (No. 2002CB513100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Ding Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Wang, F., Yao, W. et al. Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis. Apoptosis 12, 1837–1846 (2007). https://doi.org/10.1007/s10495-007-0101-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0101-9

Keywords

Navigation