Skip to main content

Advertisement

Log in

The inhibitors of apoptosis (IAPs) as cancer targets

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis has been accepted as a fundamental component in the pathogenesis of cancer, in addition to other human diseases including neurodegeneration, coronary disease and diabetes. The origin of cancer involves deregulated cellular proliferation and the suppression of apoptotic processes, ultimately leading to tumor establishment and growth. Several lines of evidence point toward the IAP family of proteins playing a role in oncogenesis, via their effective suppression of apoptosis. The central mechanisms of IAP apoptotic suppression appear to be through direct caspase and pro-caspase inhibition (primarily caspase 3 and 7) and modulation of, and by, the transcription factor NF-kappaB. Thus, when the IAPs are over-expressed or over-active, as is the case in many cancers, cells are no longer able to die in a physiologically programmed fashion and become increasingly resistant to standard chemo- and radiation therapies. To date several approaches have been taken to target and eliminate IAP function in an attempt to re-establish sensitivity, reduce toxicity, and improve efficacy of cancer treatment. In this review, we address IAP proteins as therapeutic targets for the treatment of cancer and emphasize the importance of novel therapeutic approaches for cancer therapy. Novel targets of IAP function are being identified and include gene therapy strategies and small molecule inhibitors that are based on endogenous IAP antagonists. As well, molecular mechanistic approaches, such as RNAi to deplete IAP expression, are in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    PubMed  CAS  Google Scholar 

  2. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348

    PubMed  CAS  Google Scholar 

  3. LaCasse EC et al (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259

    PubMed  Google Scholar 

  4. Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14:184–193

    PubMed  CAS  Google Scholar 

  5. Green DG, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    PubMed  CAS  Google Scholar 

  6. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    PubMed  CAS  Google Scholar 

  7. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274:20049–20052

    PubMed  CAS  Google Scholar 

  8. Muzio M et al (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930

    PubMed  CAS  Google Scholar 

  9. Salvesen GS, Abrams JM (2004) Caspase activation – stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23(16):2774–2784

    PubMed  CAS  Google Scholar 

  10. Stennicke HR et al (1999) Caspase-9 can be activated without proteolytic processing. J Biol Chem 274(13):8359–8362

    PubMed  CAS  Google Scholar 

  11. Srinivasula SM et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410(6824):112–116

    PubMed  CAS  Google Scholar 

  12. Shi Y (2004) Caspase activation: resisting the induced proximity model. Cell 117:855–888

    PubMed  CAS  Google Scholar 

  13. Nicholson DW (2001) Baiting death inhibitors. Nature 410:33–34

    PubMed  CAS  Google Scholar 

  14. Goyal L (2001) Cell death inhibition: keeping the caspases in check. Cell 104:805–808

    PubMed  CAS  Google Scholar 

  15. Bratton SB et al (2001) Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J 20(5):998–1009

    PubMed  CAS  Google Scholar 

  16. Zou H et al (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274(17):11549–11556

    PubMed  CAS  Google Scholar 

  17. Saleh A et al (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274(25):17941–17945

    PubMed  CAS  Google Scholar 

  18. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    PubMed  CAS  Google Scholar 

  19. Zamzami N et al (1998) The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16(8):1055–1063

    PubMed  CAS  Google Scholar 

  20. Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49

    PubMed  CAS  Google Scholar 

  21. Kluck RM et al (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    PubMed  CAS  Google Scholar 

  22. Green DR (2006) At the gates of death. Cancer Cell 9:361–365

    Google Scholar 

  23. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 1:1–7

    Google Scholar 

  24. Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335(6189):440–442

    PubMed  CAS  Google Scholar 

  25. Hengartner MO, Horvitz HR, (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76:665–676

    PubMed  CAS  Google Scholar 

  26. Adams JM, Cory S (2002) Apoptosomes: engines for caspase activation. Curr Opinions Cell Biol 14:715–720

    CAS  Google Scholar 

  27. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    PubMed  CAS  Google Scholar 

  28. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607

    PubMed  CAS  Google Scholar 

  29. Lindsten T et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    PubMed  CAS  Google Scholar 

  30. Gross A et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release while Bcl-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    PubMed  CAS  Google Scholar 

  31. Saito M, Korsemeyer SJ, Schlesinger PH (2000) Bax-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2:553–555

    PubMed  CAS  Google Scholar 

  32. Yethon JA et al (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941

    PubMed  CAS  Google Scholar 

  33. Zha H et al (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440–7444

    PubMed  CAS  Google Scholar 

  34. Puthalakath H et al (1999) The proapoptotic activity of the Bcl-2 family member BIM is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296

    PubMed  CAS  Google Scholar 

  35. Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    PubMed  CAS  Google Scholar 

  36. Zong WX et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162(1):59–69

    PubMed  CAS  Google Scholar 

  37. Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68(4):2521–2528

    PubMed  CAS  Google Scholar 

  38. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67(4):2168–2174

    PubMed  CAS  Google Scholar 

  39. Harvey AJ et al (1997) Anti- and pro-apoptotic activities of baculovirus and Drosophila IAP’s in an insect cell line. Cell Death Differ 4:733–744

    PubMed  CAS  Google Scholar 

  40. Uren AG, Coulson EJ, Vaux DL (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRP’s) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23:159–162

    PubMed  CAS  Google Scholar 

  41. Roy N et al (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80(1):167–178

    PubMed  CAS  Google Scholar 

  42. LeFebvre S et al (1995) Identification and characterization of a spinal muscular atrophy determining gene. Cell 80:155–165

    PubMed  CAS  Google Scholar 

  43. Gendron NH, MacKenzie AE (1999) Spinal muscular atrophy: molecular pathophysiology. Curr Opin Neurol 12:137–142

    PubMed  CAS  Google Scholar 

  44. Duckett CS et al (1996) A conserved family of cellular genes related to the baculovirus IAP gene and encoding apoptosis inhibitors. EMBO J 15:2685–2694

    PubMed  CAS  Google Scholar 

  45. Liston P et al (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379(6563):349–353

    PubMed  CAS  Google Scholar 

  46. Rothe M et al (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83(7):1243–1252

    PubMed  CAS  Google Scholar 

  47. Uren AG et al (1996) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci USA 93:4974–4978

    PubMed  CAS  Google Scholar 

  48. Lagace M et al (2001) Genomic organization of the X-linked inhibitor of apoptosis and identification of a novel testis-specific transcript. Genomics 77(3):181–188

    PubMed  CAS  Google Scholar 

  49. Richter BW et al (2001) Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol 21:4292–4301

    PubMed  CAS  Google Scholar 

  50. Chen Z et al (1999) Human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 264:847–854

    PubMed  CAS  Google Scholar 

  51. Hauser HP et al (1998) A gian ubiquitin-like conjugating enzyme related to IAP apoptosis inhibitors. J Cell Biol 141:1415–1422

    PubMed  CAS  Google Scholar 

  52. Ambrosini G, Adida C, Altieri D (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    PubMed  CAS  Google Scholar 

  53. Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276:3238–3246

    PubMed  CAS  Google Scholar 

  54. Vucic D et al (2000) ML-IAP, a novel inhibitor of apoptosis protein that is preferentially expressed in human melanomas. Curr Biol 10:1359–1366

    PubMed  CAS  Google Scholar 

  55. Lin J-H, et al., (2000) KIAP, a novel member of the inhibitor of apoptosis protein family. Biochem Biophys Res Commun 279:820–831

    PubMed  CAS  Google Scholar 

  56. Fong WG et al (2000) Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 70(1):113–122

    PubMed  CAS  Google Scholar 

  57. Kozak M (1991) An analysis of vertebrate mRNA sequences, intimations of translational control. J Cell Biol 115:887–903

    PubMed  CAS  Google Scholar 

  58. Holcik M et al (1999) A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1(3):190–192

    PubMed  CAS  Google Scholar 

  59. Holcik M, Korneluk RG (2000) Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20(13):4648–4657

    PubMed  CAS  Google Scholar 

  60. Roy N et al (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16(23):6914–6925

    PubMed  CAS  Google Scholar 

  61. Chu ZL et al (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA 94(19):10057–10062

    PubMed  CAS  Google Scholar 

  62. Wang CY et al (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683

    PubMed  CAS  Google Scholar 

  63. Fotin-Mleczek M et al (2002) Apoptotis crosstalk of TNF receptors: TNF-R2 induces depletion of TRAFs and IAP proteins and accelerates TNF-R1 dependent activation of caspase-8. J Cell Sig 115:2757–2770

    CAS  Google Scholar 

  64. Ashhab Y et al (2001) Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 495:56–60

    PubMed  CAS  Google Scholar 

  65. Li F, et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584

    PubMed  CAS  Google Scholar 

  66. Jiang X et al (2001) Participation of survivin in mitotic and apoptotic activities of normal and tumor derived cells. J Cell Biochem 83:342–354

    PubMed  CAS  Google Scholar 

  67. Li F et al (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1(8):461–466

    PubMed  CAS  Google Scholar 

  68. Fraser AG et al (1999) Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homolog BIR-1 plays a conserved role in cytokinesis. Curr Biol 9:292–301

    PubMed  CAS  Google Scholar 

  69. Jones G et al (2000) Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem 275(29):22157–22165

    PubMed  CAS  Google Scholar 

  70. Shi Y (2000) Survivin structure: crystal unclear. Nat Struct Biol 7:620–623

    PubMed  CAS  Google Scholar 

  71. Hinds MG, et al (1999) Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 6(7):648–651

    PubMed  CAS  Google Scholar 

  72. Yang Y et al (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288(5467):874–877

    PubMed  CAS  Google Scholar 

  73. Martin SJ (2001) Dealing with CARDs between life and death. Trends Cell Biol 11:188–189

    PubMed  CAS  Google Scholar 

  74. Deveraux QL et al (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388(6639):300–304

    PubMed  CAS  Google Scholar 

  75. Deveraux QL et al (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17(8):2215–2223

    PubMed  CAS  Google Scholar 

  76. Takahashi R et al (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273(14):7787–7790

    PubMed  CAS  Google Scholar 

  77. Deveraux QL et al (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18(19):5242–5251

    PubMed  CAS  Google Scholar 

  78. Johnson DE et al (2000) Inhibitor of apoptosis protein hILP undergoes caspase-mediated cleavage during T lymphocyte apoptosis. Cancer Res 60:1818–1823

    PubMed  CAS  Google Scholar 

  79. Huang Y et al (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104(5):781–790

    PubMed  CAS  Google Scholar 

  80. Suzuki Y et al (2001) X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 276(29):27058–27063

    PubMed  CAS  Google Scholar 

  81. Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 281(6):3254–3260

    PubMed  CAS  Google Scholar 

  82. Eckelman BP, Salvesen GS, Scott FL (2006) Human Inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994

    PubMed  CAS  Google Scholar 

  83. Wright ME, Han DK, Hockenbery DM (2000) Caspase-3 and inhibitor of apoptosis protein(s) interactions in Saccharomyces cerevisiae and mammalian cells. FEBS Lett 481(1):13–18

    PubMed  CAS  Google Scholar 

  84. Jin C, Reed JC (2002) Yeast and apoptosis. Nat Rev Mol Cell Biol 3(6):453–459

    PubMed  CAS  Google Scholar 

  85. Shiozaki EN et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    PubMed  CAS  Google Scholar 

  86. Srinivasula SM et al (2000) Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 275(46):36152–36157

    PubMed  CAS  Google Scholar 

  87. Zou H et al (2003) Regulation of the Apaf1/Caspase-9 apoptosome by caspase-3 and XIAP. J Biol Chem 278:8091–8098

    PubMed  CAS  Google Scholar 

  88. Tenev T et al (2005) IAP’s are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat Cell Biol 7:70–77

    PubMed  CAS  Google Scholar 

  89. Scott FL et al (2005) XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24(3):645–655

    PubMed  CAS  Google Scholar 

  90. Dan HC et al (2004) Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 279(7):5405–5412

    PubMed  CAS  Google Scholar 

  91. Samuel T et al (2006) Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor receptor-associated factor 2 and second mitochondrial activator of caspases. J Biol Chem 281(2):1080–1090

    PubMed  CAS  Google Scholar 

  92. Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6(4):287–297

    PubMed  CAS  Google Scholar 

  93. Suzuki Y et al (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8(3):613–621

    PubMed  CAS  Google Scholar 

  94. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98(15):8662–8667

    PubMed  CAS  Google Scholar 

  95. Shin H et al (2003) Identification of ubiquitination sites on the X-linked inhibitor of apoptosis protein. Biochem J 373(Pt 3):965–971

    PubMed  CAS  Google Scholar 

  96. Conze DB et al (2005) Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol Cell Biol 25(8):3348–3356

    PubMed  CAS  Google Scholar 

  97. Li X, Yang Y, Ashwell JD (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416(6878):345–347

    PubMed  Google Scholar 

  98. Liston P et al (2001) Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol 3(2):128–133

    PubMed  CAS  Google Scholar 

  99. Verhagen AM et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53

    PubMed  CAS  Google Scholar 

  100. Xia Y et al (2006) Xaf1 can cooperate with TNFalpha in the induction of apoptosis, independently of interaction with XIAP. Mol Cell Biochem 286(1–2):67–76

    PubMed  CAS  Google Scholar 

  101. Leaman DW et al (2002) Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 277(32):28504–28511

    PubMed  CAS  Google Scholar 

  102. Wang J, et al (2006) All-trans retinoic acid induces XAF1 expression through an interferon regulatory factor-1 element in colon cancer. Gastroenterology 130:747–758

    PubMed  CAS  Google Scholar 

  103. Zou B et al (2006) Correlation between the single-site CpG and expression silencing of the XAF1 gene in human gastric and colon cancers. Gastroenterology 131(6):1835–1843

    PubMed  CAS  Google Scholar 

  104. Du C et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    PubMed  CAS  Google Scholar 

  105. Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636

    PubMed  CAS  Google Scholar 

  106. Madesh M et al (2002) Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial polarization. J Biol Chem 277:5651–5659

    PubMed  CAS  Google Scholar 

  107. Gorka M et al (2004) Kinetics of Sma/DIABLO release from mitochondria during apoptosis of MCF-7 breast cancer cells. Cell Biol Int 28:741–754

    PubMed  CAS  Google Scholar 

  108. Kandasamy K et al (2003) Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO. Cancer Res 63:1712–1721

    PubMed  CAS  Google Scholar 

  109. Roberts DL et al (2001) The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol 153(1):221–227

    PubMed  CAS  Google Scholar 

  110. Fu J, Jin Y, Arend LJ (2003) Smac3, a novel Smac/DIABLO splicing variant, attenuates the stability and apoptosis-inhibiting activity of X-linked inhibitor of apoptosis protein. J Biol Chem 278(52):52660–52672

    PubMed  CAS  Google Scholar 

  111. Yang QH, Du C (2004) Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem 279(17):16963–16970

    PubMed  CAS  Google Scholar 

  112. Creagh EM et al (2004) Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. J Biol Chem 279(26):26906–26914

    PubMed  CAS  Google Scholar 

  113. Hegde R et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J Biol Chem 277(1):432–438

    PubMed  CAS  Google Scholar 

  114. Verhagen AM et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454

    PubMed  CAS  Google Scholar 

  115. Martins LM et al (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277(1):439–444

    PubMed  CAS  Google Scholar 

  116. Srinivasula SM et al (2003) Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 278(34):31469–31472

    PubMed  CAS  Google Scholar 

  117. Yang Q-H, et al (2003) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17:1487–1496

    PubMed  CAS  Google Scholar 

  118. Suzuki Y et al (2004) Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 11:208–216

    PubMed  CAS  Google Scholar 

  119. Martins LM et al (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J Biol Chem 277:439–444

    PubMed  CAS  Google Scholar 

  120. Hegde R et al (2003) The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. J Biol Chem 278(40):38699–38706

    PubMed  CAS  Google Scholar 

  121. Galvan V, Kurakin AV, Bredesen DE (2004) Interaction checkpoints of kinase 1 and XIAP during mitosis. FEBS Lett 558:57–62

    PubMed  CAS  Google Scholar 

  122. Verhagen AM et al (2007) Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Differ 14(2):348–357

    PubMed  CAS  Google Scholar 

  123. Ekert PG, Vaux DL (2005) The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 17(6):626–630

    PubMed  CAS  Google Scholar 

  124. Li S et al (2002) Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277(30):26912–26920

    PubMed  CAS  Google Scholar 

  125. Wang Z (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  126. Tamm I et al (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803

    PubMed  CAS  Google Scholar 

  127. Li J et al (2001) Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 142(1):370–380

    PubMed  CAS  Google Scholar 

  128. Duffy MJ, et al (2007) Survivin: a promising tumor biomarker. Cancer Lett 249:49–60

    PubMed  CAS  Google Scholar 

  129. Ferreira CG et al (2001) Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non-small-cell lung cancer patients. Ann Oncol 12(6):799–805

    PubMed  CAS  Google Scholar 

  130. Ferreira CG et al (2001) Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin Cancer Res 7:2468–2474

    PubMed  CAS  Google Scholar 

  131. Ramp U et al (2004) XIAP expression is an independent prognostic marker in clear-cell renal carcinomas. Hum Pathol 35:1022–1028

    PubMed  CAS  Google Scholar 

  132. Wu M, et al (2005) Immunocytochemical detection of XIAP in body cavity effusions and washes. Mod Pathol 18:1618–1622

    PubMed  CAS  Google Scholar 

  133. Holcik M, et al (2000) The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acidinduced injury. Proc Natl Acad Sci U S A 97(5):2286–2290

    Google Scholar 

  134. Conte D et al (2006) Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol 26(2):699–708

    PubMed  CAS  Google Scholar 

  135. Shafey D, Korneluk R, Holcik M (2006) Distinct patterns of expression of the inhibitor of apoptosis protein cIAP2 during murine embryogenesis. Apoptosis 11(7):1257–1259

    PubMed  Google Scholar 

  136. Harlin H et al (2001) Characterization of XIAP-deficient mice. Mol Cell Biol 21(10):3604–3608

    PubMed  CAS  Google Scholar 

  137. Olayioye MA et al (2005) XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Differ 12(1):87–90

    PubMed  CAS  Google Scholar 

  138. Potts MB et al (2005) Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol 171(6):925–930

    PubMed  CAS  Google Scholar 

  139. Potts PR et al (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163(4):789–799

    PubMed  CAS  Google Scholar 

  140. Dohi T et al (2004) An IAP–IAP complex inhibits apoptosis. J Biol Chem 279(33):34087–34090

    PubMed  CAS  Google Scholar 

  141. Cummins JM et al (2004) X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 64(9):3006–3008

    PubMed  CAS  Google Scholar 

  142. Ravi R et al (2006) Resistance of cancers to immunologic cytotoxicity and adoptive immunotherapy via X-linked inhibitor of apoptosis protein expression and coexisting defects in mitochondrial death signaling. Cancer Res 66(3):1730–1739

    PubMed  CAS  Google Scholar 

  143. Conway EM et al (2002) Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology 123(2):619–631

    PubMed  CAS  Google Scholar 

  144. Conway EM et al (2003) Survivin-dependent angiogenesis in ischemic brain: molecular mechanisms of hypoxia-induced up-regulation. Am J Pathol 163(3):935–946

    PubMed  CAS  Google Scholar 

  145. Xing Z et al (2004) Essential role of survivin, an inhibitor of apoptosis protein, in T cell development, maturation, and homeostasis. J Exp Med 199(1):69–80

    PubMed  CAS  Google Scholar 

  146. Okada H et al (2004) Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J Exp Med 199(3):399–410

    PubMed  CAS  Google Scholar 

  147. Jiang Y et al (2005) Essential role for survivin in early brain development. J Neurosci 25(30):6962–6970

    PubMed  CAS  Google Scholar 

  148. Zwerts F et al (2007) Lack of endothelial cell survivin causes embryonic defects in angiogenesis, cardiogenesis, and neural tube closure. Blood (in press)

  149. Hao Y et al (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 6(9):849–860

    PubMed  CAS  Google Scholar 

  150. Lotz K, Pyrowolakis G, Jentsch S (2004) BRUCE, a giant E2/E3 ubiquitin ligase and inhibitor of apoptosis protein of the trans-Golgi network, is required for normal placenta development and mouse survival. Mol Cell Biol 24(21):9339–9350

    PubMed  CAS  Google Scholar 

  151. Hitz C et al (2005) Progressive loss of the spongiotrophoblast layer of Birc6/Bruce mutants results in embryonic lethality. Genesis 42(2):91–103

    PubMed  CAS  Google Scholar 

  152. Ren J et al (2005) The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc Natl Acad Sci USA 102(3):565–570

    PubMed  CAS  Google Scholar 

  153. Sekine K et al (2005) HtrA2 cleaves Apollon and induces cell death by IAP-binding motif in Apollon-deficient cells. Biochem Biophys Res Commun 330(1):279–285

    PubMed  CAS  Google Scholar 

  154. Okada H et al (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22(10):3509–3517

    PubMed  CAS  Google Scholar 

  155. Perez GI et al (2007) Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ 14(3):524–533

    PubMed  CAS  Google Scholar 

  156. Yu J et al (2007) SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene (in press)

  157. Martins LM, et al (2004) Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24:9848–9862

    Google Scholar 

  158. Diez E et al (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33(1):55–60

    PubMed  CAS  Google Scholar 

  159. Fortier A, Diez E, Gros P (2005) Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol 13(7):328–335

    PubMed  CAS  Google Scholar 

  160. Dierlamm J et al (1999) The apoptosis inhibitor gene AP12 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93:3601–3609

    PubMed  CAS  Google Scholar 

  161. Baens M et al (2006) Selective expansions of marginal zone B cells in Eμ-AP12-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res 66:5270–5277

    PubMed  CAS  Google Scholar 

  162. Sagaert X et al (2006) Splenic marginal zone lymphoma-like features in API2-MALT1 transgenic mice that are exposed to antigenic stimulation. Haematologica 91(12):1693–1696

    PubMed  CAS  Google Scholar 

  163. Rigaud S et al (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444(7115):110–114

    PubMed  CAS  Google Scholar 

  164. Jones JM et al (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425(6959):721–727

    PubMed  CAS  Google Scholar 

  165. Hay BA, Huh JR, Guo M (2004) The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat Rev Genet 5(12):911–922

    PubMed  CAS  Google Scholar 

  166. Beltrami E et al (2004) Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem 279(3):2077–2084

    PubMed  CAS  Google Scholar 

  167. Yang D, Welm A, Bishop JM (2004) Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci USA 101(42):15100–15105

    PubMed  CAS  Google Scholar 

  168. Li F et al (2000) Cell division regulation by BIR1, a member of the inhibitor of apoptosis family in yeast. J Biol Chem 275(10):6707–6711

    PubMed  CAS  Google Scholar 

  169. Uren AG et al (1999) Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci USA 96(18):10170–10175

    PubMed  CAS  Google Scholar 

  170. Imoto I et al (2001) Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61:6629–6634

    PubMed  CAS  Google Scholar 

  171. Dai Z, et al (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Human Mol Genet 12:791–801

    CAS  Google Scholar 

  172. Zender L et al (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125(7):1253–1267

    PubMed  CAS  Google Scholar 

  173. Vega F, Medeiros LJ (2001) Marginal-zone-B-cell lymphoma of extranodal mucosa-associated lymphoid tissue type: molecular genetics provides new insights into pathogenesis. Adv Anat Pathol 8:313–326

    PubMed  CAS  Google Scholar 

  174. Remstein ED, James CD, Kurtin PJ (2000) Incidence and subtype specificity of AP12-MALTI fusion translocations in extranodal, nodal and splenic marginal zone lymphomas. Am J Pathol 156:1183–1188

    PubMed  CAS  Google Scholar 

  175. Baens M et al (2000) The product of the t(11;18), an AP12-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am J Pathol 156:1433–1439

    PubMed  CAS  Google Scholar 

  176. Hosokowa Y (2005) Anti-apoptotic action of AP12-MALT1 fusion protein involved in t(11;18)(q21;q21) MALT lymphoma. Apoptosis 10:25–34

    Google Scholar 

  177. Uren AG et al (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  178. Erl W et al (1999) Nuclear factor-kappa B regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells. Circ Res 84:668–677

    PubMed  CAS  Google Scholar 

  179. Hong SY et al (2000) Involvement of two NF-kB binding elements in tumor necrosis factor alpha-, CD40-, and epstein-barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J Biol Chem 275:18022–18028

    PubMed  CAS  Google Scholar 

  180. Galderisi U, Cascino A, Giordano A (1999) Antisense oligonucleotides as therapeutic agents. J Cell Phys 181:251–257

    CAS  Google Scholar 

  181. Jansen B, Zangemeister-Wittke U (2002) Antisense therapy for cancer – the time of truth. Lancet 3:672–683

    CAS  Google Scholar 

  182. Gleave M et al (2002) Antisense therapy: current status in prostate cancer and other malignancies. Cancer Metastasis Rev 21:79–92

    PubMed  CAS  Google Scholar 

  183. Agrawal S, Kandimalla ER (2000) Antisense therapeutics: is it as simple as complementary base recognition? Mol Med Today 6(2):72–81

    PubMed  CAS  Google Scholar 

  184. Echeverri CJ et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3(10):777–779

    PubMed  CAS  Google Scholar 

  185. Stein CA (2001) The experimental use of antisense oligonucleotides: a guide for the perplexed. J Clin Invest 108(5):641–644

    PubMed  CAS  Google Scholar 

  186. Lima RT et al (2004) Specific downregulation of Bcl-2 and XIAP by RNAi enhance the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther 11:309–316

    PubMed  CAS  Google Scholar 

  187. McManus DC et al (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117

    PubMed  CAS  Google Scholar 

  188. Adida C et al (1998) Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152:43–49

    PubMed  CAS  Google Scholar 

  189. Islam A et al (2000) Role of survivin, whose gene is mapped to 17q25 in human neuroblastoma and identification of a novel dominant-negative isoform. Med Ped Oncol 35:550–553

    CAS  Google Scholar 

  190. Altieri DC (2001) The molecular basis and potential survival in cancer diagnosis and therapy. Trends Mol Med 7:542–547

    PubMed  CAS  Google Scholar 

  191. Ambrosini G et al (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273:11177–11182

    PubMed  CAS  Google Scholar 

  192. Olie RA et al (2000) A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 60:2805–2809

    PubMed  CAS  Google Scholar 

  193. Shankar SL, et al (2001) Survivin inhibition induces human neural tumor cell death through caspase-independent and -dependent pathways. J Neurochem 79:426–436

    Google Scholar 

  194. Ansell SM et al (2004) Inhibition of survivin expression suppresses the growth of aggressive non-Hodgkin’s lymphoma. Leukemia 18(3):616–623

    PubMed  CAS  Google Scholar 

  195. Cao C et al (2004) XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene 23:7047–7052

    PubMed  CAS  Google Scholar 

  196. Tu SP et al (2003) Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res 63(22):7724–7732

    PubMed  CAS  Google Scholar 

  197. Hu Y et al (2003) Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 9(7):2826–2836

    PubMed  CAS  Google Scholar 

  198. Amantana A et al (2004) X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3(6):699–707

    PubMed  CAS  Google Scholar 

  199. LaCasse EC, et al (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12:5231–5241

    Google Scholar 

  200. Cheung HH, LaCasse EC, Korneluk RG (2006) X-linked inhibitor of apoptosis antagonism: strategies in cancer treatment. Clin Cancer Res 12(11):3238–3242

    PubMed  CAS  Google Scholar 

  201. Dean EJ et al (2007) Novel therapeutic targets in lung cancer: inhibitor of apoptosis proteins from laboratory to clinic. Cancer Treat Rev 33(2):203–212

    PubMed  CAS  Google Scholar 

  202. Mesri M, et al (2001) Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest 108:981–990

    Google Scholar 

  203. Swisher SG et al (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91:763–771

    PubMed  CAS  Google Scholar 

  204. O’Connor DS et al (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA 97:13103–13107

    PubMed  CAS  Google Scholar 

  205. Grossman D et al (2001) Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA 98:635–640

    PubMed  CAS  Google Scholar 

  206. Altieri DC (2006) Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol Cancer Ther 5(3):478–482

    PubMed  CAS  Google Scholar 

  207. Qi R et al (2007) Potent antitumor efficacy of XAF1 delivered by conditionally replicative adenovirus vector via caspase-independent apoptosis. Cancer Gene Ther 14(1):82–90

    Google Scholar 

  208. Yang L, et al (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 63(20):6815–6824

    Google Scholar 

  209. Vucic D et al (2002) Smac negatively regulates the anti-apoptotic activity of ML-IAP. J Biol Chem 277:12275–12279

    PubMed  CAS  Google Scholar 

  210. Davoodi J et al (2004) Neuronal apoptosis-inhibitory protein does not interact with smac and requires ATP to bind caspase-9. J Biol Chem 279(39):40622–40628

    PubMed  CAS  Google Scholar 

  211. Qiu XB, Goldberg AL (2005) The membrane-associated inhibitor of apoptosis protein, BRUCE/Apollon, antagonizes both the precursor and mature forms of Smac and caspase-9. J Biol Chem 280(1):174–182

    PubMed  CAS  Google Scholar 

  212. Wu G et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408(6815):1008–1012

    PubMed  CAS  Google Scholar 

  213. Chai JJ et al (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406(6798):855–862

    PubMed  CAS  Google Scholar 

  214. Liu Z et al (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408(6815):1004–1008

    PubMed  CAS  Google Scholar 

  215. Huang Y et al (2003) Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 278(49):49517–49522

    PubMed  CAS  Google Scholar 

  216. Kipp RA et al (2002) Molecular targeting of inhibitor of apoptosis proteins based on small molecule mimics of natural binding patterns. Biochemistry 41:7344–7349

    PubMed  CAS  Google Scholar 

  217. Arnt CR et al (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277(46):44236–44243

    PubMed  CAS  Google Scholar 

  218. Fulda S et al (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8):808–815

    PubMed  CAS  Google Scholar 

  219. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21(15):2283–2294

    PubMed  CAS  Google Scholar 

  220. Srivastava RK (2001) TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 6:535–546

    Google Scholar 

  221. Guo F et al (2002) Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99(9):3419–3426

    PubMed  CAS  Google Scholar 

  222. Ng CP, Bonavida B (2002) X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 1(12):1051–1058

    PubMed  CAS  Google Scholar 

  223. Li L et al (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305(5689):1471–1474

    PubMed  CAS  Google Scholar 

  224. Park CM et al (2005) Non-peptidic small molecule inhibitors of XIAP. Bioorg Med Chem Lett 15(3):771–775

    PubMed  CAS  Google Scholar 

  225. Oost TK et al (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47(18):4417–4426

    PubMed  CAS  Google Scholar 

  226. Bockbrader KM, Tan M, Sun Y (2005) A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24(49):7381–7388

    PubMed  CAS  Google Scholar 

  227. Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64(20):7183–7190

    PubMed  CAS  Google Scholar 

  228. Wang Z et al (2004) Cellular, biochemical, and genetic analysis of mechanism of small molecule IAP inhibitors. J Biol Chem 279(46):48168–48176

    PubMed  CAS  Google Scholar 

  229. Schimmer AD, et al (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5:25–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Korneluk.

Additional information

This work was supported by funds from the Canadian Institutes of Health Research (CIHR) (to R.G.K). Allison M. Hunter—recipient of a CIHR Doctoral Research Award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, A.M., LaCasse, E.C. & Korneluk, R.G. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12, 1543–1568 (2007). https://doi.org/10.1007/s10495-007-0087-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0087-3

Keywords

Navigation