Skip to main content
Log in

Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The wide variation in sensitivity of cancer cells to TRAIL- or histone deacetylase (HDAC) inhibitor — induced apoptosis precludes successful treatment of cancer with these agents. We report here that TRAIL and SBHA synergistically induce apoptosis of melanoma cells as revealed by quantitative analysis using the normalized isobologram method. This is supported by enhanced activation of caspase-3 and cleavage of its substrates, PARP and ICAD. Co-treatment with SBHA and TRAIL did not enhance formation of the death-inducing signaling complex (DISC) and processing of caspase-8 and Bid, but potentiated activation of Bax and release of Cytochrome C and Smac/DIABLO from mitochondria into the cytosol. SBHA down-regulated Bcl-XL, Mcl-1 and XIAP, but up-regulated Bax, Bak, and the BH3-only protein BimEL. Up-regulation of the latter by SBHA was attenuated by the presence of TRAIL, which was inhibitable by the pan-caspase inhibitor z-VAD-fmk. Inhibition of Bim by siRNA attenuated conformational changes of Bax, mitochondrial apoptotic events, and activation of caspase-3, leading to marked inhibition of the synergy between SBHA and TRAIL. Thus, Bim plays an essential role in synergistic induction of apoptosis by SBHA and TRAIL in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagata S (1997) Apoptosis by death factor. Cell 88:355–65

    Article  CAS  PubMed  Google Scholar 

  2. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256:58–6

    Article  CAS  PubMed  Google Scholar 

  3. Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–63

    Article  CAS  PubMed  Google Scholar 

  4. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–62

    Article  CAS  PubMed  Google Scholar 

  5. Gliniak B, Le T (1999) Tumor necrosis factor-related apoptosis-inducing ligand’s antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 59:6153–158

    CAS  PubMed  Google Scholar 

  6. Hersey P, Zhang XD (2003) Overcoming resistance of cancer cells to apoptosis. J Cell Physiol 196:9–8

    Article  CAS  PubMed  Google Scholar 

  7. Hersey P, Zhang XD (2001) How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1:142–0

    Article  CAS  PubMed  Google Scholar 

  8. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–308

    Article  CAS  PubMed  Google Scholar 

  9. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–312

    Article  CAS  PubMed  Google Scholar 

  10. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–316

    Article  CAS  PubMed  Google Scholar 

  11. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–570

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XD, Zhang XY, Gray CP, Nguyen T, Hersey P (2001) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by Smac/DIABLO release from mitochondria. Cancer Res 61:7339–348

    CAS  PubMed  Google Scholar 

  13. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–326

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–87

    Article  CAS  PubMed  Google Scholar 

  15. Kuwana T, Bouchier-Hayes L, Chipuk JE et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–35

    Article  CAS  PubMed  Google Scholar 

  16. Boyle GM, Martyn AC, Parsons PG (2005) Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res 18:160–66

    Article  CAS  PubMed  Google Scholar 

  17. Bandyopadhyay D, Mishra A, Medrano EE (2004) Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res 64:7706–710

    Article  CAS  PubMed  Google Scholar 

  18. Zhang XD, Gillespie SK, Borrow JM, Hersey P (2004) The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3:425–35

    CAS  PubMed  Google Scholar 

  19. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–080

    Article  CAS  PubMed  Google Scholar 

  20. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–52

    Article  CAS  PubMed  Google Scholar 

  21. Archer SY, Meng S, Shel A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Nalt Acad Sci USA 95:6791–796

    Article  CAS  Google Scholar 

  22. Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. Biol Chem 265:17174–717

    CAS  Google Scholar 

  23. Sugita K, Koizumi K, Yoshida H (1992) Morphological reversion of sis-transformed NIH3T3 cells by trichostatin A. Cancer Res 52:168–72

    CAS  PubMed  Google Scholar 

  24. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–497

    CAS  PubMed  Google Scholar 

  25. Guo F, Sigua C, Tao J et al (2004) Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 64:2580–589

    Article  CAS  PubMed  Google Scholar 

  26. Reginato MJ, Mills KR, Paulus JK et al (2003) Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nature Cell Biol 5:733–40

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P (1999) Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59:2747–753

    CAS  PubMed  Google Scholar 

  28. Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–911

    Article  CAS  PubMed  Google Scholar 

  29. Nechushtan A, Smith CL, Hsu YT, Youle RJ (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18:2330–341

    Article  CAS  PubMed  Google Scholar 

  30. Desagher S, Osen-Sand A, Nichols A et al (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–01

    Article  CAS  PubMed  Google Scholar 

  31. Chen D, Zhou Q (2004) Caspase cleavage of BimEL triggers a positive feedback amplification of apoptotic signaling. Proc Natl Acad Sci USA 101:1235–240

    Article  CAS  PubMed  Google Scholar 

  32. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM (2004) Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 11 (2):S193–06

    Article  CAS  PubMed  Google Scholar 

  33. Fulda S, Jeremias I, Debatin KM (2004) Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells. Oncogene 23:7611–620

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe K, Okamoto K, Yonehara S (2005) Sensitization of osteosarcoma cells to death receptor-mediated apoptosis by HDAC inhibitors through downregulation of cellular FLIP. Cell Death Differ 12:10–8

    Article  CAS  PubMed  Google Scholar 

  35. Kim YH, Park JW, Lee JY, Kwon TK (2004) Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 25:1813–820

    Article  PubMed  CAS  Google Scholar 

  36. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23:6261–271

    Article  CAS  PubMed  Google Scholar 

  37. Griffith TS, Fialkov JM, Scott DL et al (2002) Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma. Cancer Res 62:3093–099

    CAS  PubMed  Google Scholar 

  38. Vanoosten RL, Moore JM, Karacay B, Griffith TS (2005) Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer Biol Ther 4:1104–112

    Article  CAS  PubMed  Google Scholar 

  39. Vanoosten RL, Moore JM, Ludwig AT, Griffith TS (2005) Depsipeptide (FR901228) enhances the cytotoxic activity of TRAIL by redistributing TRAIL receptor to membrane lipid rafts. Mol Ther 11:542–52

    Article  CAS  PubMed  Google Scholar 

  40. Rosato RR, Almenara JA, Dai Y, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2:1273–284

    CAS  PubMed  Google Scholar 

  41. Aron JL, Parthun MR, Marcucci G et al (2003) Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 102:652–58

    Article  CAS  PubMed  Google Scholar 

  42. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–495

    Article  CAS  PubMed  Google Scholar 

  43. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–29

    Article  CAS  PubMed  Google Scholar 

  44. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–03

    Article  CAS  PubMed  Google Scholar 

  45. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–687

    Article  CAS  PubMed  Google Scholar 

  46. Rudner J, Jendrossek V, Lauber K, Daniel PT, Wesselborg S, Belka C (2005) Type I and type II reactions in TRAIL-induced apoptosis–results from dose-response studies. Oncogene 24:130–40

    Article  CAS  PubMed  Google Scholar 

  47. Zhang XD, Gillespie SK, Borrow J, Hersey P (2003) The histone Deacetylase Inhibitor Suberic Bishydroxamate: A potential sensitizer of melanoma to TRAIL-induced apoptosis. BioChem Pharmacol 66:1537–545

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hersey.

Additional information

This work was supported by the NSW State Cancer Council, the Melanoma and Skin Cancer Research Institute Sydney, the Hunter Melanoma Foundation, NSW, and the National Health and Medical Research Council, Australia. X.D. Zhang is a Cancer Institute NSW Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, S., Borrow, J., Zhang, X.D. et al. Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells. Apoptosis 11, 2251–2265 (2006). https://doi.org/10.1007/s10495-006-0283-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0283-6

Keywords

Navigation