Skip to main content
Log in

Malignant glioma: Neuropathology and Neurobiology

Maligne Gliome: Neuropathologie und Neurobiologie

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Maligne Gliome können in jedem Lebensalter auftreten. Am häufigsten jedoch bei Erwachsenen, die das 40. Lebensjahr bereits überschritten haben. Männer sind häufiger betroffen als Frauen. Maligne Gliome beinhalten ein Spektrum von Tumoren mit verschiedenen Subtypen. Im Wesentlichen handelt es sich um Glioblastome, anaplastische Astrozytome / Oligoastrozytome / Oligodendrogliome, die gemeinsam durch ein diffus infiltrierendes, rasches Wachstum und durch eine fatale Prognose mit wenigen Monaten oder Jahren gekennzeichnet sind. Invasion ist eine der Hauptursache für das geringe therapeutische Ansprechen, was auch eine komplette chirurgische Resektion unmöglich macht. Die Invasion durch Tumorzellen benötigt eine Interaktion mit extrazellulärer Matrix und benachbarten Zellen des normalen Gehirns. Vaskuläre Proliferationen und Gewebsnekrosen sind charakteristische Merkmale, insbesondere des Glioblastoms. Diese Veränderungen sind wahrscheinlich die Konsequenz rasch wachsender, schlecht oxygenierten, Tumorgewebes. Häufige genetische Veränderungen wie P53, EGFFR und RB pathway scheinen auch pathogenetisch relevant. Bei Patienten mit Glioblastomen ist der Methylguaninemethyltransferase (MGMT) Promoter Methylierungs Status und bei Patienten mit anaplastischen Oligodendrogliomen der 1p19q Status relevant für das Ansprechen auf Chemotherapie. Die Rolle der Neuropathologie und Neurobiologie in der Neuroonkologie besteht erstens in der klinisch relevanten Klassifizierung von Hirntumoren auf der Basis pathobiologischer Faktoren und zweitens in der Klärung der Ätiologie und Pathogenese von Hirntumoren und drittens das Übertragen von klinisch relevanten molekularen Parametern in die klinische Praxis.

Summary

Malignant gliomas may manifest at any age including congenital and childhood cases. Peak incidence is, however, in adults older than 40 years. Males are more frequently affected than females. The sole unequivocal risk factor is therapeutic ionizing irradiation. Malignant gliomas comprise a spectrum of different tumor subtypes. Within this spectrum, glioblastoma, anaplastic astrocytoma and anaplastic oligodendroglioma share as basic features preferential location in cerebral hemispheres, diffuse infiltration of brain tissue, fast tumor growth with fatal outcome within months or years. Invasion is regarded as one of the main reasons for poor therapeutic success, because it makes complete surgical removal of gliomas impossible. Invasion of glioma cells requires interaction with the extracellular matrix and with surrounding cells of the healthy brain tissue. Vascular proliferates and tissue necrosis are characteristic features of malignant gliomas, in particular glioblastoma. These features are most likely the consequence of rapidly increasing tumor mass that is inadequately oxygenized by the preexisting vasculature. In malignant glioma, distinct molecular pathways including the p53 pathway, the RB pathway and the EGFR pathway show frequent alterations that seem to be pathogenetically relevant. Methylguanine-methyltransferase (MGMT) promoter methylation status in glioblastoma and 1p19q deletion status in anaplastic oligodendroglioma are associated with response to chemotherapy. The role of neuropathology and neurobiology in neurooncology is 1. to provide a clinically meaningful classification of brain tumors on basis of pathobiological factors, 2. to clarify etiology and pathogenesis of brain tumors as rational basis for development of new diagnostic tests and therapies, and 3. to translate testing for new clinically relevant molecular parameters into clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Kleihues P, Cavenee W (2000) World Health Organisation classification of tumours: Pathology and genetics of tumours of the nervous system. 1 ed. IARC Press, Lyon

    Google Scholar 

  • Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64: 479–489

    PubMed  CAS  Google Scholar 

  • Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 109: 93–108

    Article  Google Scholar 

  • Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353: 811–822

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    PubMed  CAS  Google Scholar 

  • Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23: 9392–9400

    Article  PubMed  CAS  Google Scholar 

  • Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70: 217–228

    Article  PubMed  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3: 489–501

    Article  PubMed  CAS  Google Scholar 

  • Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG (2004) Genetic and hypoxic regulation of angiogenesis in gliomas. J Neurooncol 70: 229–243

    Article  PubMed  Google Scholar 

  • Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36: 1–12

    PubMed  Google Scholar 

  • Sanson M, Thillet J, Hoang-Xuan K (2004) Molecular changes in gliomas. Curr Opin Oncol 16: 607–613

    Article  PubMed  CAS  Google Scholar 

  • Malkin D (2001) The role of p53 in human cancer. J Neurooncol 51: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Kapoor GS, O'Rourke DM (2003) Mitogenic signaling cascades in glial tumors. Neurosurgery 52: 1425–1434; discussion 1434–1435

    Article  PubMed  Google Scholar 

  • Nathoo N, Goldlust S, Vogelbaum MA (2004) Epidermal growth factor receptor antagonists: novel therapy for the treatment of high-grade gliomas. Neurosurgery 54: 1480–1488; discussion 1488–1489

    Article  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003

    Article  PubMed  CAS  Google Scholar 

  • Kaina B, Christmann M (2002) DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 40: 354–367

    PubMed  CAS  Google Scholar 

  • Schold SC Jr, Brent TP, von Hofe E, Friedman HS, Mitra S, Bigner DD, Swenberg JA, Kleihues P (1989) O6-alkylguanine-DNA alkyltransferase and sensitivity to procarbazine in human brain-tumor xenografts. J Neurosurg 70: 573–577

    Article  PubMed  Google Scholar 

  • Yarosh DB (1985) The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res 145: 1–16

    PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428

    Article  PubMed  CAS  Google Scholar 

  • Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4: 988–993

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2000) Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur J Cancer 36: 2294–2300

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Esteller M (2002) DNA methylation: a profile of methods and applications. Biotechniques 33: 632, 634, 636–649

    Google Scholar 

  • Macdonald DR, Gaspar LE, Cairncross JG (1990) Successful chemotherapy for newly diagnosed aggressive oligodendroglioma. Ann Neurol 27: 573–574

    Article  PubMed  CAS  Google Scholar 

  • Cairncross JG, Macdonald DR (1988) Successful chemotherapy for recurrent malignant oligodendroglioma. Ann Neurol 23: 360–364

    Article  PubMed  CAS  Google Scholar 

  • Mason WP, Krol GS, DeAngelis LM (1996) Low-grade oligodendroglioma responds to chemotherapy. Neurology 46: 203–207

    PubMed  CAS  Google Scholar 

  • Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS et al. (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90: 1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145: 1175–1190

    PubMed  CAS  Google Scholar 

  • Bello MJ, Vaquero J, de Campos JM, Kusak ME, Sarasa JL, Saez-Castresana J, Pestana A, Rey JA (1994) Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors. Int J Cancer 57: 172–175

    PubMed  CAS  Google Scholar 

  • Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G (2005) Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer 113: 379–385

    Article  PubMed  CAS  Google Scholar 

  • van den Bent MJ (2004) Diagnosis and management of oligodendroglioma. Semin Oncol 31: 645–652

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C, Mueller W, Lass U, Kamel-Reid S, von Deimling A (2005) Molecular genetic analysis of oligodendroglial tumors. J Neuropathol Exp Neurol 64: 10–14

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. Hainfellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preusser, M., Haberler, C. & Hainfellner, J. Malignant glioma: Neuropathology and Neurobiology. Wien Med Wochenschr 156, 332–337 (2006). https://doi.org/10.1007/s10354-006-0304-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-006-0304-7

Schlüsselwörter

Keywords

Navigation