Skip to main content

Advertisement

Log in

Carboplatin synergistically triggers the efficacy of photodynamic therapy via caspase 3-, 8-, and 12-dependent pathways in human anaplastic thyroid cancer cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Anaplastic thyroid cancer is one of the most aggressive forms of malignancies which grow very rapidly. Several conventional methods have been applied for the treatment of anaplastic thyroid cancer, but most of them were not successful in complete recovery of the patients. Therefore, a combination of two or more conventional modalities is being applied nowadays for the treatment of this type of cancer. In this present study, the combination of photodynamic therapy (PDT) and chemotherapy has been studied in anaplastic thyroid cancer. Human anaplastic thyroid cancer cells FRO were treated with a chemotherapy drug, carboplatin (cis-diammine-1,1-cyclobutanedicarboxyl-ateplatinum II (CBDCA)), and radachlorin-mediated PDT individually and in combination. Several parameters like cytotoxicity assay by MTT, apoptosis study by annexin V and propidium iodide, cell cycle analysis by flow cytometry, confocal microscopic study, and Western blot analysis for different apoptosis-related proteins like Bax, cytochrome c, caspases 3, 9, 8, and 12, etc. were studied to check the efficacy of the combination treatment as well as to find out the mechanism of this enhanced efficacy. Results showed that both PDT and CBDCA can induce apoptosis in FRO cells. However, a synergistic efficacy was observed when the cells were treated with CBDCA and PDT in combination. Changes in mitochondrial membrane potential and an increase in reactive oxygen species generation were observed in combination treatments. The enhanced expression of different apoptotic pathway-related proteins like Bax, cytochrome c, caspase 3, caspase 8, caspase 12, etc. also confirmed the higher efficacy of combination treatment. Therefore, with this combination treatment, not only a higher efficacy can be achieved but also the effective dose of the chemotherapy drug can be reduced, and hence, the adverse side effects of the chemotherapy drugs can also be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC (2011) Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J oncol 2011:542358. doi:10.1155/2011/542358

    Article  PubMed Central  PubMed  Google Scholar 

  2. Are C, Shaha A (2006) Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 13(4):453–464. doi:10.1245/aso.2006.05.042

    Article  PubMed  Google Scholar 

  3. Ain KB (1998) Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid off j Am Thyroid Assoc 8(8):715–726

    Article  CAS  Google Scholar 

  4. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC (2011) Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J oncol. doi:10.1155/2011/542358

    PubMed Central  PubMed  Google Scholar 

  5. Pasieka JL (2003) Anaplastic thyroid cancer. Curr opin oncol 15(1):78–83

    Article  PubMed  Google Scholar 

  6. Shaha AR, Ferlito A, Rinaldo A (2001) Distant metastases from thyroid and parathyroid cancer. ORL j oto-rhino-laryngol relat spec 63(4):243–249

    Article  CAS  Google Scholar 

  7. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat rev Cancer 3(5):380–387. doi:10.1038/nrc1071

    Article  CAS  PubMed  Google Scholar 

  8. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat rev Cancer 3(5):380–387

    Article  CAS  PubMed  Google Scholar 

  9. Wilson BC (2002) Photodynamic therapy for cancer: principles. Can j gastroenterol 16(6):393–396

    PubMed  Google Scholar 

  10. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  CAS  PubMed  Google Scholar 

  11. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem photobiol 55(1):145–157

    Article  CAS  PubMed  Google Scholar 

  12. Lam M, Oleinick NL, Nieminen AL (2001) Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J biol chem 276(50):47379–47386. doi:10.1074/jbc.M107678200

    Article  CAS  PubMed  Google Scholar 

  13. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. lancet oncol 5(8):497–508. doi:10.1016/S1470-2045(04)01529-3

    Article  CAS  PubMed  Google Scholar 

  14. Hopper C (2000) Photodynamic therapy: a clinical reality in the treatment of cancer. lancet oncol 1:212–219

    Article  CAS  PubMed  Google Scholar 

  15. Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol cancer res treat 4(3):283–293

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Douillard S, Lhommeau I, Olivier D, Patrice T (2010) In vitro evaluation of radachlorin sensitizer for photodynamic therapy. J photochem photobiol B Biol 98(2):128–137. doi:10.1016/j.jphotobiol.2009.11.011

    Article  CAS  Google Scholar 

  17. Bae SM, Kim YW, Lee JM, Namkoong SE, Han SJ, Kim JK, Lee CH, Chun HJ, Jin HS, Ahn WS (2004) Photodynamic effects of Radachlorin on cervical cancer cells. Cancer res treat off j Korean Cancer Assoc 36(6):389–394. doi:10.4143/crt.2004.36.6.389

    Google Scholar 

  18. Filonenko EV, Sokolov VV, Chissov VI, Lukyanets EA, Vorozhtsov GN (2008) Photodynamic therapy of early esophageal cancer. Photodiagn photodyn ther 5(3):187–190. doi:10.1016/j.pdpdt.2008.06.001

    Article  Google Scholar 

  19. Kochneva EV, Filonenko EV, Vakulovskaya EG, Scherbakova EG, Seliverstov OV, Markichev NA, Reshetnickov AV (2010) Photosensitizer Radachlorin(R): skin cancer PDT phase II clinical trials. Photodiagn photodyn ther 7(4):258–267. doi:10.1016/j.pdpdt.2010.07.006

    Article  CAS  Google Scholar 

  20. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat rev Cancer 7(8):573–584

    Article  CAS  PubMed  Google Scholar 

  21. Decatris MP, Sundar S, O’Byrne KJ (2004) Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer treat rev 30(1):53–81. doi:10.1016/s0305-7372(03)00139-7

    Article  CAS  PubMed  Google Scholar 

  22. Forastiere A, Koch W, Trotti A, Sidransky D (2001) Head and neck cancer. N Engl j med 345(26):1890–1900. doi:10.1056/NEJMra001375

    Article  CAS  PubMed  Google Scholar 

  23. Kelly K, Crowley J, Bunn PA Jr, Presant CA, Grevstad PK, Moinpour CM, Ramsey SD, Wozniak AJ, Weiss GR, Moore DF, Israel VK, Livingston RB, Gandara DR (2001) Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: a Southwest Oncology Group trial. J clin oncol off j Am Soc Clin Oncol 19(13):3210–3218

    CAS  Google Scholar 

  24. du Bois A, Luck HJ, Meier W, Adams HP, Mobus V, Costa S, Bauknecht T, Richter B, Warm M, Schroder W, Olbricht S, Nitz U, Jackisch C, Emons G, Wagner U, Kuhn W, Pfisterer J (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95(17):1320–1329

    Article  PubMed  Google Scholar 

  25. Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39(35):8113–8127. doi:10.1039/c0dt00292e

    Article  CAS  PubMed  Google Scholar 

  26. Bhuvaneswari R, Gan YY, Soo KC, Olivo M (2009) Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response. Mol cancer 8:94. doi:10.1186/1476-4598-8-94

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bhuvaneswari R, Yuen GY, Chee SK, Olivo M (2011) Antiangiogenesis agents avastin and erbitux enhance the efficacy of photodynamic therapy in a murine bladder tumor model. Lasers surg med 43(7):651–662. doi:10.1002/lsm.21109

    PubMed  Google Scholar 

  28. Compagnin C, Mognato M, Celotti L, Canti G, Palumbo G, Reddi E (2010) Cell proliferation and cell cycle alterations in oesophageal p53-mutated cancer cells treated with cisplatin in combination with photodynamic therapy. Cell prolif 43(3):262–274. doi:10.1111/j.1365-2184.2010.00673.x

    Article  CAS  PubMed  Google Scholar 

  29. Datta SN, Allman R, Loh C, Mason M, Matthews PN (1997) Effect of photodynamic therapy in combination with mitomycin C on a mitomycin-resistant bladder cancer cell line. Br j cancer 76(3):312–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ma LW, Moan J, Steen HB, Iani V (1995) Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma. Br j cancer 71(5):950–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ahn J-C, Biswas R, Chung P-S (2012) Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers surg med 44(10):840–849. doi:10.1002/lsm.22095

    Article  PubMed  Google Scholar 

  32. Skirnisdottir I, Lindborg K, Sorbe B (2007) Adjuvant chemotherapy with carboplatin and taxane compared with single drug carboplatin in early stage epithelial ovarian carcinoma. Oncol rep 18(5):1249–1256

    CAS  PubMed  Google Scholar 

  33. Gervais R, Robinet G, Clement-Duchene C, Denis F, Kouri CE, Martin P, Chouaki N, Bourayou N, Morere JF (2013) Pemetrexed and carboplatin, an active option in first-line treatment of elderly patients with advanced non-small cell lung cancer (NSCLC): a phase II trial. Lung Cancer. doi:10.1016/j.lungcan.2013.01.008

    PubMed  Google Scholar 

  34. Fury MG, Sherman E, Ho A, Katabi N, Sima C, Kelly KW, Nwankwo O, Haque S, Pfister DG (2012) A phase I study of temsirolimus plus carboplatin plus paclitaxel for patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Cancer chemother pharmacol 70(1):121–128. doi:10.1007/s00280-012-1894-y

    Article  CAS  PubMed  Google Scholar 

  35. Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, Finkelstein D, Hasan T (2010) Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer res 70(22):9319–9328. doi:10.1158/0008-5472.CAN-10-1783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer res 70(2):440–446. doi:10.1158/0008-5472.CAN-09-1947

    Article  CAS  PubMed  Google Scholar 

  37. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol rev 58(3):621–681. doi:10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  38. Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311. doi:10.1385/1-59259-811-0:301

    CAS  PubMed  Google Scholar 

  39. Elisei R (2012) Anaplastic thyroid cancer therapy: dream or reality? Endocrine. doi:10.1007/s12020-012-9785-x

    PubMed  Google Scholar 

  40. Yu GP, Li JC, Branovan D, McCormick S, Schantz SP (2010) Thyroid cancer incidence and survival in the National Cancer Institute surveillance, epidemiology, and end results race/ethnicity groups. Thyroid off j Am Thyroid Assoc 20(5):465–473. doi:10.1089/thy.2008.0281

    Article  Google Scholar 

  41. Rajeswaran A, Trojan A, Burnand B, Giannelli M (2008) Efficacy and side effects of cisplatin- and carboplatin-based doublet chemotherapeutic regimens versus non-platinum-based doublet chemotherapeutic regimens as first line treatment of metastatic non-small cell lung carcinoma: a systematic review of randomized controlled trials. Lung Cancer 59(1):1–11. doi:10.1016/j.lungcan.2007.07.012

    Article  PubMed  Google Scholar 

  42. Ofner JG, Schlogl H, Kostron H (1996) Unusual adverse reaction in a patient sensitized with Photosan 3. J photochem photobiol B Biol 36(2):183–184

    Article  CAS  Google Scholar 

  43. Chen H-H, Chen T-W, Lin H (2010) Pravastatin attenuates carboplatin-induced nephrotoxicity in rodents via peroxisome proliferator-activated receptor α-regulated heme oxygenase-1. Mol Pharmacol 78(1):36–45. doi:10.1124/mol.109.061101

    Article  CAS  PubMed  Google Scholar 

  44. Sharma A, Bhat MK (2011) Enhancement of carboplatin- and quercetin-induced cell death by roscovitine is Akt dependent and p53 independent in hepatoma cells. Integr cancer ther 10(4):NP4–NP14. doi:10.1177/1534735411423922

    Article  PubMed  Google Scholar 

  45. Bevis KS, McNally LR, Sellers JC, Della Manna D, Londono Joshi A, Amm H, Straughn JM Jr, Buchsbaum DJ (2011) Anti-tumor activity of an anti-DR5 monoclonal antibody, TRA-8, in combination with taxane/platinum-based chemotherapy in an ovarian cancer model. Gynecol oncol 121(1):193–199. doi:10.1016/j.ygyno.2010.11.046

    Article  CAS  PubMed  Google Scholar 

  46. Panzarini E, Inguscio V, Dini L (2011) Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy. Cell death dis 2:e169. doi:10.1038/cddis.2011.51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DWC (1998) Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett 437(1–2):5–10. doi:10.1016/S0014-5793(98)01193-4

    Article  CAS  PubMed  Google Scholar 

  48. Singh S, Chhipa RR, Vijayakumar MV, Bhat MK (2006) DNA damaging drugs-induced down-regulation of Bcl-2 is essential for induction of apoptosis in high-risk HPV-positive HEp-2 and KB cells. Cancer lett 236(2):213–221. doi:10.1016/j.canlet.2005.05.024

    Article  CAS  PubMed  Google Scholar 

  49. Lee CS, Kim YJ, Jang ER, Myung SC, Kim W (2010) Akt inhibitor enhances apoptotic effect of carboplatin on human epithelial ovarian carcinoma cell lines. Eur j pharmacol 632(1–3):7–13. doi:10.1016/j.ejphar.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  50. Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B Biol 96(1):1–8. doi:10.1016/j.jphotobiol.2009.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012K1A4A3053142).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chul Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, R., Chung, PS., Moon, J.H. et al. Carboplatin synergistically triggers the efficacy of photodynamic therapy via caspase 3-, 8-, and 12-dependent pathways in human anaplastic thyroid cancer cells. Lasers Med Sci 29, 995–1007 (2014). https://doi.org/10.1007/s10103-013-1452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1452-9

Keywords

Navigation