Skip to main content
Log in

Anti-prostate cancer activity of 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazide copper complexes in vivo by bioluminescence imaging

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazide complex (CuHQTS) is a copper complex with strong anticancer activity against cisplatin-resistant neuroblastoma and prostate cancer cells in vitro by cell proliferation assay or fluorescent microscopic imaging. This study aimed to evaluate anti-prostate cancer activity of CuHQTS in vivo by bioluminescence imaging (BLI) and tumor size measurement, using athymic nu/nu mice implanted with prostate cancer cells carrying luciferase reporter gene (Luc-PC3). Growth of Luc-PC3 cells (1 × 105 cells) implanted in athymic nu/nu mice treated with CuHQTS for 2 weeks was suppressed by measurement of luciferase signals (6.18 × 107 to 5.36 × 107 p/s/cm2/sr) with BLI, compared with luciferase signals of Luc-PC3 cells (4.66 × 107 to 1.51 × 108 p/s/cm2/sr, p < 0.05) in the mice treated with normal saline of placebo control. Moreover, the size of PC-3 xenograft tumor (126.5 ± 34.2 mm3) in athymic nu/nu mice treated with CuHQTS was significantly smaller than the size of PC-3 xenograft tumor (218.6 ± 48.0 mm3, p < 0.05) in athymic nu/nu mice treated with normal saline of placebo control, suggesting in vivo tumor growth inhibition activity of CuHQTS on prostate cancer. The findings of this study support further investigation of CuHQTS as a promising new anticancer agent for the treatment of metastatic prostate cancer refractory to anticancer drugs currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berger MF, Lawrence MS, Demichelis F et al (2011) Nature 470:214–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2017) CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  3. Muhammad N, Guo Z (2014) Curr Opin Chem Biol 19:144–153

    Article  PubMed  CAS  Google Scholar 

  4. Florea AM, Busselberg D (2011) Cancers 3:1351–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dasari S, Tchounwou PB (2014) Eur J Pharmacol 740:364–378

    Article  PubMed  CAS  Google Scholar 

  6. Siddik ZH (2003) Oncogene 22:7265–7279

    Article  PubMed  CAS  Google Scholar 

  7. Tabti R, Tounsi N, Gaiddon C, Bentouhami E, Desaubry L (2017) Med Chem 7:875–879

    Article  Google Scholar 

  8. Chaudhary A, Singh A (2016) Int J Curr Res Chem Pharm Sci 3:57–67

    Article  CAS  Google Scholar 

  9. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114:815–862

    Article  PubMed  CAS  Google Scholar 

  10. French FA, Freedlander BL (1958) Cancer Res 18:1290

    PubMed  CAS  Google Scholar 

  11. Petering HG, Buskirk HH, Underwood GE (1964) Cancer Res 24:367

    PubMed  CAS  Google Scholar 

  12. Zhang H, Wu JS, Peng F (2008) Anticancer Drugs 19:125–132

    Article  PubMed  CAS  Google Scholar 

  13. Zhang H, Thomas R, Oupicky D, Peng F (2008) J Biol Inorg Chem 13:47–55

    Article  PubMed  CAS  Google Scholar 

  14. Cater MA, Pearson HB, Wolyniec K et al (2013) ACS Chem Biol 8:1621–1631

    Article  PubMed  CAS  Google Scholar 

  15. Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG (2013) J Med Chem 56:722–734

    Article  PubMed  CAS  Google Scholar 

  16. Xie F, Peng F (2017) J Fluoresc 27:1937–1941

    Article  PubMed  CAS  Google Scholar 

  17. Paroo Z, Bollinger RA, Braasch DA, Richer E, Corey DR, Antich PP, Mason RP (2004) Mol Imaging 3:117–124

    Article  PubMed  Google Scholar 

  18. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Med Res Rev 30:708–749

    PubMed  CAS  Google Scholar 

  19. Luker GD, Luker KE (2008) J Nucl Med 49:1–4

    Article  PubMed  Google Scholar 

  20. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Neoplasia 1:303–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Neoplasia 2:41–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kaijzel EL, van der Pluijm G, Lowik CW (2007) Clin Cancer Res 13:3490–3497

    Article  PubMed  Google Scholar 

  23. Licha K, Olbrich C (2005) Adv Drug Deliv Rev 57:1087–1108

    Article  PubMed  CAS  Google Scholar 

  24. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Nat Rev Drug Discov 7:591–607

    Article  PubMed  CAS  Google Scholar 

  25. Rudin M, Weissleder R (2003) Nat Rev Drug Discov 2:123–131

    Article  PubMed  CAS  Google Scholar 

  26. Cox C, Teknos TN, Barrios M, Brewer GJ, Dick RD, Merajver SD (2001) Laryngoscope 111:696–701

    Article  PubMed  CAS  Google Scholar 

  27. Redman BG, Esper P, Pan Q, Dunn RL, Hussain HK, Chenevert T, Brewer GJ, Merajver SD (2003) Clin Cancer Res 9:1666–1672

    PubMed  CAS  Google Scholar 

  28. Brewer GJ, Dick RD, Grover DK, LeClaire V, Tseng M, Wicha M, Pienta K, Redman BG, Jahan T, Sondak VK (2000) Clin Cancer Res 6:1–10

    PubMed  CAS  Google Scholar 

  29. Hassouneh B, Islam M, Nagel T, Pan Q, Merajver SD, Teknos TN (2007) Mol Cancer Ther 6:1039–1045

    Article  PubMed  CAS  Google Scholar 

  30. Pan Q, Kleer CG, Van Golen KL, Irani J, Bottema KM, Bias C, De Carvalho M, Mesri EA, Robins DM, Dick RD (2002) Cancer Res 62:4854–4859

    PubMed  CAS  Google Scholar 

  31. Mihich E, Simpson CL, Mulhern AI (1965) Cancer Res 25:1417–1431

    PubMed  CAS  Google Scholar 

  32. Yuan J, You Y, Lu X, Muzik O, Oupicky D, Peng F (2007) Mol Imaging 6:10–17

    Article  PubMed  CAS  Google Scholar 

  33. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F (2013) Mol Imaging 12:203–212

    Article  PubMed  CAS  Google Scholar 

  34. Hrkach J, Hoff DV, Ali MM et al (2012) Sci Trans Med 4:128–139

    Article  Google Scholar 

  35. Cai H, Xie F, Mulgaonkar A, Chen L, Sun X, Hsieh JT, Peng F, Tian R, Li L, Wu C, Ai H (2018) Nanomedicine. https://doi.org/10.2217/nnm-2018-0062

    Article  PubMed  Google Scholar 

  36. Kularatne SA, Wang K, Santhapuram HK, Low PS (2009) Mol Pharm 6:780–789

    Article  PubMed  CAS  Google Scholar 

  37. Tykvart J, Schimer J, Bařinková J et al (2014) Bioorg Med Chem 22:4099–4108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Haiyuan Zhang for synthesis of CuHQTS used for this study. This study was supported by a faculty research development fund awarded to F. P by Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center for financial support. The study was also supported in part with infrastructure of the Southwestern Small Animal Imaging Resource provided by 1P30 CA142543 and P41-EB015908.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyu Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Cai, H. & Peng, F. Anti-prostate cancer activity of 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazide copper complexes in vivo by bioluminescence imaging. J Biol Inorg Chem 23, 949–956 (2018). https://doi.org/10.1007/s00775-018-1596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1596-y

Keywords

Navigation