Skip to main content

Advertisement

Log in

Regulating surgical oncotaxis to improve the outcomes in cancer patients

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Excessive surgical stress and postoperative complications cause a storm of perioperative cytokine release, which has been shown to enhance tumor metastasis in experimental models. We have named this phenomenon “surgical oncotaxis”. The mechanisms that underpin this process are thought to be excessive corticosteroid secretion, coagulopathy in the peripheral vasculature, immune suppression and excessive production of reactive oxygen species. Nuclear factor-kappa B (NFkB) activation plays a key role in these mechanisms. Minimally invasive surgical techniques should be used, and postoperative complications should be avoided whenever possible to lessen the impact of surgical oncotaxis. Furthermore, there may be a role for a small preoperative dose of corticosteroid or the use of free radical scavengers in the perioperative period. Recently, there has been a great deal of interest in omega-3 fatty acid, because it regulates NFkB activation. The use of multimodal treatments that regulate surgical oncotaxis may be as important as chemotherapy for determining the outcome of patients with cancer undergoing surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hattori T, Hamai Y, Ikeda H, Harada T, Ikeda T. Enhancing effect of thoracotomy on tumor growth in rats. Gann. 1978;69:401–6.

    PubMed  CAS  Google Scholar 

  2. Hattori T, Hamai Y, Takiyama W, Hirai T, Ikeda T. Enhancing effect of thoracotomy on tumor growth in rats with special reference to the duration and timing of the operation. Gann. 1980;71:280–4.

    PubMed  CAS  Google Scholar 

  3. Hirai T, Matsumoto H, Yamashita Y, Urakami A, Iki K, Yamamura M, et al. Surgical oncotaxis—excessive surgical stress and postoperative complications contribute to enhancing tumor metastasis, resulting in a poor prognosis for cancer patients. Ann Thorac Cardiovasc Surg. 2005;11:4–6.

    PubMed  Google Scholar 

  4. Albert D, Zeidman I. Relation of glucocorticoid activity of steroids to number of metastases. Cancer Res. 1962;22:1297–300.

    PubMed  CAS  Google Scholar 

  5. Zeidman I. The fate of circulating tumor cells. A mechanism of cortisone action in increasing metastases. Cancer Res. 1962;22:501–3.

    PubMed  CAS  Google Scholar 

  6. Kodama M, Kodama T. Enhancing effect of hydrocortisone on hematogenous metastasis of Ehrlich ascites tumor in mice. Cancer Res. 1975;35:1015–21.

    PubMed  CAS  Google Scholar 

  7. Hirai T. Experimental studies on tumor enhancing effect of operative stress with special reference to the participation of corticosteroid (in Japanese). Hiroshimadaigaku Igaku Zasshi (Med J Hiroshima Univ). 1985;33:871–82.

    CAS  Google Scholar 

  8. Glasner A, Avraham R, Rosenne E, Benish M, Zmora O, Shemer S, et al. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184:2449–57.

    Article  PubMed  CAS  Google Scholar 

  9. Kakkar AK, Lorenzo F, Pineo GF, Williamson RCN. Venous thromboembolism and cancer. Bailliere’s Clin Haematol. 1998;11:675–87.

    Article  CAS  Google Scholar 

  10. Stouthard JML, Levi M, Hack CE, Veenhof CHN, Romijn HA, Sauerwein HP, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost. 1996;76:738–42.

    PubMed  CAS  Google Scholar 

  11. Nawroth PP, Stern DM. Tumor necrosis factor/cachectin-induced modulation of endothelial cell hemostatic properties. Onkologie. 1987;10(254):258.

    Google Scholar 

  12. Suemasu K, Ishikawa S. Inhibitive effect of heparin and dextran sulfate on experimental pulmonary metastases. Gann. 1970;61:125–30.

    PubMed  CAS  Google Scholar 

  13. Rak J, Milsom C, May L, Klement P, Yu J. Tissue factor in cancer and angiogenesis: the molecular link between genetic tumor progression, tumor neovascularization, and cancer coagulopathy. Semin Thromb Hemost. 2006;32:54–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kakkar AK, Lemoine NR, Scully MF, Tebbutt S, Williamson RC. Tissue factor expression correlate with histological grade in human pancreatic cancer. Br J Surg. 1995;82:1101–4.

    Article  PubMed  CAS  Google Scholar 

  15. Nakasaki T, Wada H, Shigemori C, Miki C, Gabazza EC, Mobori T, et al. Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. Am J Hematol. 2002;69:247–54.

    Article  PubMed  CAS  Google Scholar 

  16. Sawada M, Miyake S, Ohdama S, Mstsubara O, Masuda S, Yakumaru K, et al. Expression of tissue factor in non-small-cell lung cancers and its relationship to metastasis. Br J Cancer. 1999;79:472–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Poon RT, Lau CP, Ho JW, Yu WC, Fan ST, Wong J. Tissue factor expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma. Clin Cancer Res. 2003;9:5339–45.

    PubMed  CAS  Google Scholar 

  18. Takagi T, Sakakura C, Kin S, Nakase Y, Fukuda K, Shimomura K, et al. Dextran sulfate suppresses cell adhesion and cell cycle progression of melanoma cells. Anticancer Res. 2005;25:895–902.

    PubMed  CAS  Google Scholar 

  19. DeFeo K, Hayes C, Chernick M, Ryn JV, Gilmour SK. Use of dabigastran etexilate to reduce breast cancer progression. Cancer Biol Ther. 2010;10:1001–8.

    Article  PubMed  CAS  Google Scholar 

  20. Dolovich LR, Ginsberg JS, Douketis JD, Holbrook AM, Cheah G. A meta-analysis comparing low-molecular-weight heparin with unfractioned heparin in the treatment of venous thromboembolism. Arch Intern Med. 2000;160:181–8.

    Article  PubMed  CAS  Google Scholar 

  21. Altinbas M, Coskun HS, Er O, Ozkan M, Eser B, Unal A, et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost. 2004;2:1266–71.

    Article  PubMed  CAS  Google Scholar 

  22. Kakkar AK, Levine MN, Kadziola Z, Lemoine NR, Low V, Patel HK, et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol. 2004;22:1944–8.

    Article  PubMed  CAS  Google Scholar 

  23. Kirstein JM, Graham KC, Mackenzie LT, Johnston DE, Martin LJ, Tuck AB, et al. Effect of anti-fibrinolytic therapy on experimental melanoma metastasis. Clin Exp Metastasis. 2009;26:121–31.

    Article  PubMed  CAS  Google Scholar 

  24. Nadir Y, Brenner B. Heparanase procoagulant activity. Thromb Res. 2012;129:576–9.

    Google Scholar 

  25. Ogawa K, Hirai M, Katsube T, Murayama M, Hamaguchi K, Shimakawa T, et al. Suppression of cellular immunity by surgical stress. Surgery. 2000;127:329–36.

    Article  PubMed  CAS  Google Scholar 

  26. Vallina VL, Velasco JM. The influence of laparoscopy on lymphocyte subpopulations in the surgical patient. Surg Endosc. 1996;10:481–4.

    Article  PubMed  CAS  Google Scholar 

  27. Shafirb M, Bekesi JG, Papatestas A, Slater G, Aufses AH Jr. Preoperative and postoperative immunological evaluation of patients with colorectal cancer. Cancer. 1980;46:700–5.

    Article  Google Scholar 

  28. Cristaldi M, Rovati M, Elli M, Gerlinzani S, Lesma A, Barzarotti L, et al. Lymphocyte subpopulation changes after open and laparoscopic cholecystectomy: a prospective and comparative study on 38 patients. Surg Laparosc Endosc. 1997;7:255–61.

    Article  PubMed  CAS  Google Scholar 

  29. Leaver HA, Craig SR, Yap PL, Walker WS. Lymphocyte responses following open and minimally invasive thoracic surgery. Eur J Clin Invest. 2000;30:230–8.

    Article  PubMed  CAS  Google Scholar 

  30. Ben-Eliyohu S, Page GG, Yirmaiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999;80:880–8.

    Article  Google Scholar 

  31. Ahlers O, Nachtigall I, Lenze J, Goldmann A, Schulte E, Hohne C, et al. Intraoperative thoracic epidural anesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth. 2008;101:781–7.

    Article  PubMed  CAS  Google Scholar 

  32. Mafdy AM, Galley HF, Abdel-Wahed MA, el-Korny KF, Sheta SA, Webster NR. Differential modulation of interleukin-6 and inter-leukin-10 by diclofenac in patients undergoing major surgery. Br J Anaesth. 2002;88:797–802.

    Article  Google Scholar 

  33. Dithmar S, Rusciano D, Lynn MJ, Lawson DH, Armstrong CA, Grossniklaus HE. Neoadjuvant interferone alfa-2b treatment in a murine model for metastatic ocular melanoma: a preliminary study. Arch Ophthalmol. 2000;118:1085–9.

    Article  PubMed  CAS  Google Scholar 

  34. Gallagher WJ, Dubinett SM, Hoover HC Jr, Kradin RL. Efficacy of adjuvant interleukin-2 after excision of BALB/c fibrosarcoma. Surgery. 1989;106:120–5.

    PubMed  CAS  Google Scholar 

  35. Caprotti R, Bribio F, Fumagalli L, Nobili C, Degrate L, Lissoni P, et al. Free-from-progression period and overall short preoperative immunotherapy with IL-2 increases the survival of pancreatic cancer patients treated with macroscopically radical surgery. Anticancer Res. 2008;28:1951–4.

    PubMed  CAS  Google Scholar 

  36. Bravio F, Lissoni P, Fumagalli L, Girlando M, Marsili MT, Nespoli A, et al. Pre-operative IL-2 immunoprophylaxis of cancer recurrence: long term clinical results of a phase II study in radically operable colorectal cancer. Oncol Rep. 1999;6:1205–7.

    Google Scholar 

  37. Toge T, Hirai T, Takiyama W, Hattori T. Effects of surgical stress on natural killer activity, proliferative response of spleen cells and cytostatic activity of lung macrophages in rats. Gann. 1981;72:790–4.

    PubMed  CAS  Google Scholar 

  38. Hattori T, Hamai Y, Ikeda T, Takiyama W, Hirai T, Miyoshi Y. Inhibitory effects of immunopotentiators on the enhancement of lung metastases induced by operative stress in rats. Gann. 1982;73:132–5.

    PubMed  CAS  Google Scholar 

  39. Yamaguchi Y, Hihara J, Hironaka K, Ohshita A, Okita R, Okawaki M, et al. Postoperative immunosuppression cascade and immunotherapy using lymphokine-activated killer cells for patients with esophageal cancer: possible application for compensatory anti-inflammatory response syndrome. Oncol Rep. 2006;15:895–901.

    PubMed  CAS  Google Scholar 

  40. Adamson IYR, Young L, Orr FW. Tumor metastasis after hyperoxic injury and repair of the pulmonary endothelium. Lab Invest. 1987;57:71–7.

    PubMed  CAS  Google Scholar 

  41. Nonaka Y, Iwagaki H, Kimura T, Fuchimoto S, Orita K. Effect of reactive oxygen intermediates on the in vitro invasive capacity of tumor cells and liver metastasis in mice. Int J Cancer. 1993;54:983–6.

    Article  PubMed  CAS  Google Scholar 

  42. ten Kate M, van der Wal JB, Sluiter W, Hofland LJ, Jeekel J, Sonneveld P. The role of superoxide anions in the development of distant tumour recurrence. Br J Cancer. 2006;95:1497–503.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Mongaret C, Alexandre J, Thomas-Schoemann A, Bermudez E, Cherau C, Nicco C, et al. Tumor invasion induced by oxidative stress is dependent on membrane ADAM 9 protein and its secreted form. Int J Cancer. 2011;129:791–8.

    Article  PubMed  CAS  Google Scholar 

  44. Hirai T, Yoshimoto A, Iwata T, Yamashita Y, Kuwahara M, Toge T. Enhancing effect of thoraco-laparotomy on liver metastasis and the role played by active oxygen in its mechanism. Jpn J Surg. 1997;27:1040–5.

    CAS  Google Scholar 

  45. Hyoudou K, Nishikawa M, Kobayashi Y, Ikemura M, Yamashita F, Hashida M. SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis. 2008;25:531–6.

    Article  PubMed  Google Scholar 

  46. Sun Y-F, Yang X-R, Zhou J, Qiu S-J, Fan J, Xu Y. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol. 2011;137:1151–73.

    Article  PubMed  Google Scholar 

  47. Rahbari NN, Aigner M, Thorlund K, Mollberg N, Motschall E, Jensen K, et al. Meta-analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology. 2010;138:1714–26.

    Article  PubMed  Google Scholar 

  48. Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Shim M, et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kB signaling. J Clin Invest. 2011;121:212–25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Tsukioka T, Nishiyama N, Iwata T, Nagano K, Tei K, Suehiro S. Preoperative serum oxidative stress marker as a strong indicator of nodal involvement in clinical stage I lung adenocarcinoma. Int J Clin Oncol. 2012;17:250–5.

    Article  PubMed  CAS  Google Scholar 

  50. Brokelman WJ, Lansvert M, Borel Rinkes IH, Kinkenbijil JH, Reijinen MM. Peritoneal change due to laparoscopic surgery. Surg Endosc. 2011;25:1–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Ishikawa M, Nishioka M, Hanaki N, Miyauchi T, Kashiwagi Y, Ioki H, et al. Perioperative immune response in cancer patients undergoing digestive surgeries. World J Surg Oncol. 2009;7:7.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Brune IB, Wilke W, Hensler T, Feussner H, Holzmann B, Siewert JR, et al. Normal T lymphocyte and monocyte function after minimally invasive surgery. Surg Endosc. 1998;12:1020–4.

    Article  PubMed  CAS  Google Scholar 

  53. Kloosterman T, von Blomberg BM, Borgstein P, Cuesta MA, Scheper RJ, Meijer S. Unimpaired immune functions after laparoscopic cholecystectomy. Surgery. 2006;139:39–45.

    Article  Google Scholar 

  54. Vittimberga FJ Jr, Foley DP, Meyers WC, Callery MP. Laparoscopic surgery and the systemic immune response. Ann Surg. 1998;227:326–34.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Eisold S, Mehrabi A, Konstantinidis L, Mieth M, Hinz U, Kashfi A, et al. Experimental study of cardiorespiratory and stress factors in esophageal surgery using robot-assisted thoracoscopic or open thoracic approach. Arch Surg. 2008;143:156–63.

    Article  PubMed  Google Scholar 

  56. Amin AT, Shiraishi N, Ninomiya S, Tajima M, Inomata M, Kitano S. Increased mRNA expression of epidermal growth factor receptor, human epidermal receptor, and survivin in human gastric cancer after the surgical stress of laparotomy versus carbon dioxide pneumoperitoneum in a murine model. Surg Endosc. 2010;24:1427–33.

    Article  PubMed  Google Scholar 

  57. Tsujimoto H, Takahata R, Nomura S, Yaguchi Y, Kumano I, Matsumoto Y, et al. Video-assisted thoracoscopic surgery for esophageal cancer attenuates postoperative systemic responses and pulmonary complications. Surgery. 2012;151:667–73.

    Article  PubMed  Google Scholar 

  58. Walker WS, Leaver HA. Immunologic and stress responses following video-assisted thoracic surgery and open pulmonary lobectomy in early stage lung cancer. Thorac Surg Clin. 2007;17:241–9.

    Article  PubMed  Google Scholar 

  59. Biere SS, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomized controlled trial. Lancet. 2012;379:1887–92.

    Article  PubMed  Google Scholar 

  60. Rizk NP, Bach PB, Schrag D, Bains MS, Turnbull AD, Karpeh M, et al. The impact of complications on outcomes after resection for esophageal and gastroesophageal junction carcinoma. J Am Coll Surg. 2004;198:42–50.

    Article  PubMed  Google Scholar 

  61. Hu Y, Zheng B, Rong T-H, Fu J-H, Zhu Z-H, Yang H, et al. Prognostic analysis of the patients with stage-III esophageal squamous cell carcinoma after radical esophagectomy. Chin J Cancer. 2010;29:178–83.

    Article  PubMed  Google Scholar 

  62. Shimada H, Okazumi S, Matsubara H, Nabeya Y, Shiratori T, Hayashi H, et al. Is the surgical stress associated with worse survival in patients with esophageal cancer?—analysis of colon substitution for 37 patients with remnant stomach. Hepatogastroenterology. 2007;54:791–5.

    PubMed  Google Scholar 

  63. Sierzega M, Kolodziejczyk P, Kulig J. Impact of anastomotic leakage on long-term survival after total gastrectomy for carcinoma of the stomach. Br J Surg. 2010;97:1035–42.

    Article  PubMed  CAS  Google Scholar 

  64. Toshihiro H, Hihara J, Inoue H, Toge T, Inoue Y, Sakaue T. The effect of radical scavenger EPC-K1 and methylprednisolone on reactive substances after surgery (in Japanese). Nippon Syoukakigekagakkaishi (Jpn J Gastroenterol Surg). 2001;34:323–8.

    Google Scholar 

  65. Sayama J, Shineha R, Yokota K, Hirayama K, Higuchi N, Ohe H, et al. Control of the excessive reaction after surgery for esophageal carcinoma with preoperative administration of the cortico-steroids (in Japanese). Nippon Syoukakigekagakkaishi (Jpn J Gastroenterol Surg). 1994;27:841–8.

    Google Scholar 

  66. Ueda H, Hirakawa H, Shineha R, Sayama J, Nishihira T, Mori S. Postoperative changes of serum IL-6 production and preventive effects of methylprednisolone for mouse experimental surgical stress (in Japanese). Nippon Syoukakigekagakkaishi (Jpn J Gastroenterol Surg). 1994;27:2191.

  67. Raimondi AM, Guimaraes HP, Amaral JLG, Leal PHR. Perioperative glucocorticoid administration for prevention of systemic organ failure in patients undergoing esophageal resection for esophageal carcinoma. Sao Paulo Med J. 2006;124:112–5.

    Article  PubMed  Google Scholar 

  68. Shimada H, Ochiai T, Okazumi S, Matsubara H, Nabeya Y, Miyazawa Y, et al. Clinical benefits of steroid therapy on surgical stress in patients with esophageal cancer. Surgery. 2000;128:791–8.

    Article  PubMed  CAS  Google Scholar 

  69. Shimada H, Okazumi S, Matsubara H, Nabeya Y, Hayashi H, Shiratori T, et al. Effects of steroid therapy on postoperative course and survival of patients with thoracic esophageal carcinoma. Esophagus. 2004;1:89–94.

    Article  Google Scholar 

  70. Nishizaki C, Nishikawa M, Yata T, Yamada T, Takahashi Y, Oku M, et al. Inhibition of surgical trauma-enhanced peritoneal dissemination of tumor cells by human catalase derivatives in mice. Free Radic Biol Med. 2011;51:773–9.

    Article  PubMed  CAS  Google Scholar 

  71. By Ho, Wu YM, Chang KJ, Pan TM. Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci. 2011;7:869–80.

    Google Scholar 

  72. O’Leary DP, Bhatt L, Woolley JF, Gough DR, Wang JH, Cotter TG, et al. TLR-4 signalling accelerates colon cancer cell adhesion via NF-kB mediated transcriptional up-regulation of Nos-1. PLoS ONE. 2012;7:e44176.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Yuksel M, Okajima K, Uchiba M, Okabe H. Gabexate mesilate, a synthetic protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappaB and activator protein-1 in human monocytes. J Pharmacol Exp Ther. 2003;305:298–305.

    Article  PubMed  CAS  Google Scholar 

  74. Ohashi I, Nishijima J, Murata A, Tada H, Kato H. Inhibitory effect of a synthetic protease inhibitor (gabexate mesilate) on the respiratory burst oxidase in human neutrophils. J Biochem. 1995;118:1001–6.

    Article  PubMed  CAS  Google Scholar 

  75. Jung SE, Yun IJ, Youn YK, Lee JE, Ha J, Noh DY, et al. Effect of protease inhibitor on ischemia–reperfusion injury to rat liver. World J Surg. 1999;23:1027–31.

    Article  PubMed  CAS  Google Scholar 

  76. Goldfarb Y, Shapiro H, Singer P, Kalderon Y, Levi B, Glasner A, et al. Fish oil attenuates surgery-induced immunosuppression, limits post-operative metastatic dissemination and increases long-term recurrence-free survival in rodents inoculated with cancer cells. Clin Nutr. 2012;31:396–404.

    Article  PubMed  CAS  Google Scholar 

  77. Kontogiannea M, Gupta A, Ntanios F, Graham T, Jones P, Meterissian S. Omega-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells. J Surg Res. 2000;92:201–5.

    Article  PubMed  CAS  Google Scholar 

  78. Gutt CN, Brinkmann L, Mehrabi A, Fonouni H, Muller-Stich BP, Vetter G, et al. Dietary omega-3-polyunsaturated fatty acids prevent the development of metastasis of colon carcinoma in rat liver. Eur J Nutr. 2007;46:279–85.

    Article  PubMed  CAS  Google Scholar 

  79. Prasad S, Ravindran J, Aggarwal BB. NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336:25–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Ghosh-Choudhury T, Mandal CC, Woodruff K, Clair PS, Fernandes G, Choudhury GG, et al. Fish oil targets PTEN to regulate NFκB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat. 2009;118:213–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J Am Coll Nutr. 2004;23:71–8.

    Article  PubMed  CAS  Google Scholar 

  82. Mishra A, Chaudhary A, Sethi S. Oxidized omega-3 fatty acids inhibit NF-κB activation via a PPARα-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24:1621–7.

    Article  PubMed  CAS  Google Scholar 

  83. Jho DH, Cole SM, Lee EM, Espat NJ. Role of omega-3 fatty acid supplementation in inflammation and malignancy. Integr Cancer Ther. 2004;3:98–111.

    Article  PubMed  CAS  Google Scholar 

  84. Wang J, Yu JC, Kang WM, Ma ZQ. Superiority of a fish oil-enriched emulsion to medium-chain triacylglycerols/long-chain triacylglycerols in gastrointestinal surgery patients: a randomized clinical trial. Nutrition. 2012;28:623–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, T., Matsumoto, H., Kubota, H. et al. Regulating surgical oncotaxis to improve the outcomes in cancer patients. Surg Today 44, 804–811 (2014). https://doi.org/10.1007/s00595-013-0627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-013-0627-0

Keywords

Navigation