Skip to main content

Advertisement

Log in

Anesthetics, immune cells, and immune responses

  • Invited Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

General anesthesia accompanied by surgical stress is considered to suppress immunity, presumably by directly affecting the immune system or activating the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Along with stress such as surgery, blood transfusion, hypothermia, hyperglycemia, and postoperative pain, anesthetics per se are associated with suppressed immunity during perioperative periods because every anesthetic has direct suppressive effects on cellular and neurohumoral immunity through influencing the functions of immunocompetent cells and inflammatory mediator gene expression and secretion. Particularly in cancer patients, immunosuppression attributable to anesthetics, such as the dysfunction of natural killer cells and lymphocytes, may accelerate the growth and metastases of residual malignant cells, thereby worsening prognoses. Alternatively, the anti-inflammatory effects of anesthetics may be beneficial in distinct situations involving ischemia and reperfusion injury or the systemic inflammatory response syndrome (SIRS). Clinical anesthesiologists should select anesthetics and choose anesthetic methods with careful consideration of the clinical situation and the immune status of critically ill patients, in regard to long-term mortality, morbidity, and the optimal prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Graham EA. The influence of ether and ether anesthesia on bacteriolysis, agglutination and phagocytosis. J Infect Dis. 1911;8:147.

    CAS  Google Scholar 

  2. Gaylord HR, Simpson BT. Effect of certain anaesthetics and loss of blood upon growth of transplanted mouse cancer. J Cancer Res. 1916;1:379–382.

    Google Scholar 

  3. Homburger JA, Meiler SE. Anesthesia drugs, immunity, and long-term outcome. Curr Opin Anaesthesiol. 2006;19:423–428.

    Article  PubMed  Google Scholar 

  4. Vallejo R, Hord ED, Barna SA, Santiago-Palma J, Ahmed S. Perioperative immunosuppression in cancer patients. J Environ Pathol Toxicol Oncol. 2003;22:139–146.

    Article  PubMed  Google Scholar 

  5. Chrousos GP. Seminars in medicine of the Beth Israel Hospital, Boston: the hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332:1351–1362.

    Article  PubMed  CAS  Google Scholar 

  6. Kennedy BC, Hall GM. Neuroendocrine and inflammatory aspects of surgery: do they affect outcome? Acta Anaesthesiol Belg. 1999;50:205–209.

    PubMed  CAS  Google Scholar 

  7. Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and anti-inflammatory cytokines, and autoimmunity. Ann NY Acad Sci. 2002;966:290–303.

    PubMed  CAS  Google Scholar 

  8. Younes RN, Rogatko A, Brennan MF. The influence of intraoperative hypotension and perioperative blood transfusion on disease-free survival in patients with complete resection of colorectal liver metastases. Ann Surg. 1991;214:107–113.

    Article  PubMed  CAS  Google Scholar 

  9. Rosen CB, Nagorney DM, Taswell HF, Helgeson SL, Ilstrup DM, van Heerden J, Adson MA. Perioperative blood transfusion and determinants of survival after liver resection for metastatic colorectal carcinoma. Ann Surg. 1992;216:493–504.

    Article  PubMed  CAS  Google Scholar 

  10. Tatter PI. Perioperative blood transfusion and colorectal cancer: a review. J Surg Oncol. 1988;39:197–200.

    Article  Google Scholar 

  11. Rassias AJ, Marrin CAS, Arruda J, Whalen PK, Beach M, Yeager MP. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg. 1999;88:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  12. Rassias AJ, Givan AL, Marrin CAS, Whalen K, Pahl J, Yearger MP. Insulin increases neutrophil count and phagocytosis capacity after cardiac surgery. Anesth Analg. 2002;94:1113–1119.

    Article  PubMed  CAS  Google Scholar 

  13. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med. 1996;334:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  14. Beilin B, Shavit Y, Razumovsky J, Wolloch Y, Zeidel A, Bessler H. Effect of mild perioperative hypothermia on cellular immune responses. Anesthesiology. 1998;89:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  15. Sheffield CW, Sessler DI, Hunt TK. Mild hypothermia during isoflurance anesthesia decreases resistance to E. coli dermal infection in guinea pigs. Acta Anaesthesiol Scand. 1994;38:201–205.

    Article  PubMed  CAS  Google Scholar 

  16. Beilin B, Shavit Y, Trabekin E, Mordashev B, Mayburd E, Zeidel A, Bessler H. The effects of postoperative pain management on immune response to surgery. Anesth Analg. 2003;97:822–827.

    Article  PubMed  Google Scholar 

  17. Volk T, Schenk M, Voigt K, Tohtz S, Putzier M, Kox WJ. Postoperative epidural anesthesia preserves lymphocyte, but not monocyte, immune function after major spine surgery. Anesth Analg. 2004;98:1086–1092.

    Article  PubMed  Google Scholar 

  18. Yokoyama M, Itano Y, Mizobuchi S. The effects of epidural block on the distribution of lymphocyte subsets and natural-killer cell activity in patients with and without pain. Anesth Analg. 2001;92:463–469.

    Article  PubMed  CAS  Google Scholar 

  19. Kehlet H. Manipulation of the metabolic response in clinical practice. World J Surg. 2000;24:690–695.

    Article  PubMed  CAS  Google Scholar 

  20. Black CT, Hennessey PJ, Andrassy RJ. Short-term hyperglycemia depresses immunity through nonenzymatic glycosylation of circulating immunoglobulin. J Trauma. 1990;30:830–833.

    PubMed  CAS  Google Scholar 

  21. Wilson RM. Neutrophil function in diabetes. Diabetic Med. 1986;3:509–512.

    PubMed  CAS  Google Scholar 

  22. Wilson RM, Tomlinson DR, Reeves WG. Neutrophil sorbitol production impairs oxidative killing in diabetes. Diabetic Med. 1987;4:37–40.

    PubMed  CAS  Google Scholar 

  23. Kirkley SA, Cowles J, Pellegrini VD Jr, Harris CM, Boyd AD, Blumberg N. Cytokine secretion after allogeneic or autologous blood transfusion (letter). Lancet. 1995;345:527.

    Article  PubMed  CAS  Google Scholar 

  24. Kirkley S, Cowles J, Pellegrini V, Harris C, Boyd A, Blumberg N. Increased T helper 2 (TH2) type cytokine secretion found in surgical patients receiving allogeneic blood. Transfusion. 1995;35(Suppl):44.

    Google Scholar 

  25. Kelbel I, Weiss M. Anesthetics and immune function. Curr Opin Anaesthesiol. 2001;14:685–691.

    Article  PubMed  CAS  Google Scholar 

  26. Benjamini E, Coico R, Sunshine G. Elements of innate and acquired immunity. In: Benjamini E, Coico R, Sunshine G, editors. Immunology—a short course. New York: Wiley-Liss; 2000, p. 17–39.

    Google Scholar 

  27. Benjamini E, Coico R, Sunshine G. Biology of the T lymphocyte. In: Benjamini E, Coico R, Sunshine G, editors. Immunology—a short course. New York: Wiley-Liss; 2000. p. 169–185.

    Google Scholar 

  28. Weiss A. T-lymphocyte activation. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 411–448.

    Google Scholar 

  29. Mack VE, McCarter MD, Naama HA, Calvano SE, Daly JM. Dominance of T helper 2-type cytokines after severe injury. Arch Surg. 1996;131:1303–1309.

    PubMed  CAS  Google Scholar 

  30. Powrie F, Coffman RL. Cytokine regulation of T cell function: potential for therapeutic intervention. Immunol Today. 1993;14:270–274.

    Article  PubMed  CAS  Google Scholar 

  31. Yokoyama WM. Natural killer cells. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 575–604.

    Google Scholar 

  32. Schreiber H. Tumor immunology. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven; 1999. p. 1237–1270.

    Google Scholar 

  33. Kurosawa S, Matsuzaki G, Harada M, Ando Takashi, Nomoto K. Early appearance and activation of natural killer cells in tumor-infiltrating lymphoid cells during tumor development. Eur J Immunol. 1993;23:1029–1033.

    Article  PubMed  CAS  Google Scholar 

  34. Kurosawa S, Harada M, Matsuzaki G, Shinomiya H, Terao H, Kobayashi N, Nomoto K. Early appearing tumour-infiltrating natural killer cells play a crucial role in the generation of antitumour T lymphocytes. Immunology. 1995;85:338–346.

    PubMed  CAS  Google Scholar 

  35. Kurosawa S, Harada M, Shinomiya Y, Terao H, Nomoto K. The concurrent administration of OK432 augments the antitumor vaccination effect with tumor cells by sustaining locally infiltrating natural killer cells. Cancer Immunol Immunother. 1996;43:31–38.

    Article  PubMed  CAS  Google Scholar 

  36. Kos FJ, Engelman EG. Immune regulation: a critical link between NK cells and CTLs. Immunol Today. 1996;17:174–176.

    Article  PubMed  CAS  Google Scholar 

  37. Trinchieri G. Biology of natural killer cells. In: Dixon FJ, editor. Advances in immunology. San Diego: Academic; 1989. p. 187–376.

    Google Scholar 

  38. Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Cutting edge: differentiation of human NK cells into NK1 and NK2 subsets. J Immunol. 1998;161:5821–5824.

    PubMed  CAS  Google Scholar 

  39. Seo N, Tokura Y. Downregulation of innate and acquired antitumor immunity by bystander gammadelta and alphabeta T lymphocytes with Th2 or Tr1 cytokine profiles. J Interferon Cytokine Res. 1999;19:555–561.

    Article  PubMed  CAS  Google Scholar 

  40. Ben-Eliyahu S, Page GG, Yirmiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999;80:880–888.

    Article  PubMed  CAS  Google Scholar 

  41. Nathan C. Neutrophils and immunity: challenges and opportunities. Nature Rev Immunol. 2006;6:173–182.

    Article  CAS  Google Scholar 

  42. Appelberg R. Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol. 2006;16:87–92.

    Google Scholar 

  43. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320:365–376.

    PubMed  CAS  Google Scholar 

  44. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481–497.

    Article  PubMed  CAS  Google Scholar 

  45. Welch WD. Halothane reversibly inhibits human neutrophil bacterial killing. Anesthesiology. 1981;55:650–654.

    PubMed  CAS  Google Scholar 

  46. Nakagawara M, Takeshige K, Takamatsu J, Takahashi S, Yoshitake J, Minakami S. Inhibition of superoxide production and Ca2+ mobilization in human neutrophils by halothane, enflurane, and isoflurane. Anesthesiology. 1986;64:4–12.

    Article  PubMed  CAS  Google Scholar 

  47. Fröhlich D, Rothe G, Schwall B, Schmid P, Schmitz G, Taeger K, Hobbhahn J. Effects of volatile anaesthetics on human neutrophil oxidative response to the bacterial peptide FMLP. Br J Anaesth. 1997;78:718–723.

    PubMed  Google Scholar 

  48. Guochang H, Salem MR, Crystal GJ. Isoflurane prevents platelets from enhancing neutrophil-induced coronary endothelial dysfunction. Anesth Analg. 2005;101:1261–1268.

    Article  Google Scholar 

  49. Fan H, Sun B, Gu Q, Lafond-Walker A, Cao S, Becker LC. Oxygen radicals trigger activation of NF-κ B and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol. 2002;282:H1778–H1786.

    CAS  Google Scholar 

  50. Hu G, Vinten-Johansen J, Salem MR, Zhao ZQ, Crystal GJ. Isoflurane inhibits neutrophil-endothelium interactions in the coronary circulation: lack of role for adenosine triphosphate-sensitive potassium channels. Anesth Analg. 2002;94:849–856.

    Article  PubMed  CAS  Google Scholar 

  51. Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43:860–878.

    Article  PubMed  CAS  Google Scholar 

  52. De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: Mechanisms and clinical implications. Anesth Analg. 2005;100:1584–1593.

    Article  PubMed  Google Scholar 

  53. Kevin LG, Novalija E, Stowe DF. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg. 2005;101:1275–1287.

    Article  PubMed  Google Scholar 

  54. Tait AR, Davidson BA, Johnson KJ, Remick DG, Knight PR. Halothane inhibits the intraalveolar recruitment of neutrophils, lymphocytes, and macrophages in response to influenza virus infection in mice. Anesth Analg. 1993;76:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  55. Kotani N, Hashimoto H, Sessler DI, Kikuchi A, Suzuki A, Takahashi S, et al. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology. 1998;89:1125–1132.

    Article  PubMed  CAS  Google Scholar 

  56. Boost KA, Flondor M, Hofstetter C, Platacis I, Stegewerth K, Hoegl S, et al. The beta-adrenoceptor antagonist propranolol counteracts anti-inflammatory effects of isoflurane in rat endotoxemia. Acta Anaesthesiol Scand. 2007;51:900–908.

    Article  PubMed  CAS  Google Scholar 

  57. Tschaikowsky K, Ritter J, Schröppel K, Kühn M. Volatile anesthetics differentially affect immunostimulated expression of inducible nitric oxide synthase: role of intracellular calcium. Anesthesiology. 2000;92:1093–1102.

    Article  PubMed  CAS  Google Scholar 

  58. Wallace JL. Nitric oxide as a regulator of inflammatory process. Mem Inst Oswaldo Cruz. 2005;100:5–9.

    Article  PubMed  CAS  Google Scholar 

  59. Chello M, Mastroroberto P, Marchese A, Maltese G, Santangelo E, Amantea B. Nitric oxide inhibits neutrophil adhesion during experimental extracorporeal circulation. Anesthesiology. 1998;89:443–448.

    Article  PubMed  CAS  Google Scholar 

  60. Reutershan J, Chang D, Hayes JK, Ley K. Protective effects of isoflurane pretreatment in endotoxin-induced lung injury. Anesthesiology. 2006;104:511–517.

    Article  PubMed  CAS  Google Scholar 

  61. Fuentes JM, Talamini MA, Fulton WB, Hanly EJ, Aurora AR, Demaio A. Genaral anesthesia delays the inflammatory response and increases survival for mice with endotoxic shock. Clin Vaccine Immunol. 2006;13:281–288.

    Article  PubMed  CAS  Google Scholar 

  62. Hofstetter C, Flondor M, Boost KA, Koehler P, Bosmann M, Pfeilschifter J, Zwissler B, Mühl H. A brief exposure to isoflurane (50 s) significantly impacts on plasma cytokine levels in endotoxemic rats. Int Immunopharmacol. 2005;5:1519–1522.

    Article  PubMed  CAS  Google Scholar 

  63. Hofstetter C, Boost KA, Flondor M, Basagan-Mogol E, Betz C, Homann M, Mühl H, Pfeilschifter J, Zwissler B. Anti-inflammatory effects of sevoflurane and mild hypothermia in endotoxemic rats. Acta Anaesthesiol Scand. 2007;51:893–899.

    Article  PubMed  CAS  Google Scholar 

  64. Tarter PI, Steinberg B, Barron DM, Martinelli G. The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch Surg. 1987;122:1264–1268.

    Google Scholar 

  65. Schantz SP, Brown BW, Lisa E, Taylor DL, Beddingfield N. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother. 1987;25:141–145.

    Article  PubMed  CAS  Google Scholar 

  66. Fujiwara T, Yamaguchi Y. Autologous tumor killing activity as a prognostic factor in primary resected nonsmall cell carcinoma of the lung. Cancer. 1997;79:474–481.

    Article  Google Scholar 

  67. Woods GM, Griffiths DM. Reversible inhibition of natural killer cell activity by volatile anaesthetic agents in vitro. Br J Anaesth. 1986;58:535–539.

    Article  PubMed  CAS  Google Scholar 

  68. Markovic SN, Knight PR, Murasko DM. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology. 1993;78:700–706.

    Article  PubMed  CAS  Google Scholar 

  69. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97:1331–1339.

    Article  PubMed  CAS  Google Scholar 

  70. Markovic SN, Murasko DM. Anesthesia inhibits interferon-induced natural killer cell cytotoxicity via induction of CD8+ suppressor cells. Cell Immunol. 1993;151:474–480.

    Article  PubMed  CAS  Google Scholar 

  71. Tønnesen E, Brinkløv MM, Christensen NJ, Olesen AS, Madsen T. Natural killer cell activity and lymphocyte function during and after coronary artery bypass grafting in relation to the endocrine stress response. Anesthesiology. 1987;67:526–533.

    Article  PubMed  Google Scholar 

  72. Salo M. Effects of anaesthesia and surgery on the immune response. In: Watkins J, Salo M, editors. Trauma, stress and immunity in anaesthesia and surgery. London: Butterworth Scientific; 1982. p. 211–253.

    Google Scholar 

  73. Salo M, Eskola J, Nikoskelainen J. T-and B-lymphocyte function in anesthetics. Acta Anaesthesiol Scand. 1984;28:292–295.

    PubMed  CAS  Google Scholar 

  74. Bruce DL. Halothane inhibition of phytohemagglutinin-induced transformation of lymphocytes. Anesthesiology. 1972;36:201–205.

    Article  PubMed  CAS  Google Scholar 

  75. Bruce DL. Halothane inhibition of RNA and protein synthesis of PHA-treated human lymphocytes. Anesthesiology. 1975;42:11–14.

    Article  PubMed  CAS  Google Scholar 

  76. Ferrero E, Ferrero ME, Marni A, Zocchi MR, Stella L, Rugarli C, Tiengo M. In vitro effects of halothane on lymphocytes. Eur J Anaesthesiol. 1986;3:321–330.

    PubMed  CAS  Google Scholar 

  77. Hamra JG, Yaksh TL. Halothane inhibits T cell proliferation and interleukin-2 receptor expression in rats. Immunopharmacol Immunotoxicol. 1996;18:323–336.

    Article  PubMed  CAS  Google Scholar 

  78. Stevenson GM, Hall SC, Miller PJ, Alvord G, Leventhal JB, Seleny F, Stevenson HC. The effects of anesthetic agents on human immune system function. I. Design of a system to deliver inhalational anesthetic agents to leukocytes cultures in vitro. J Immunol Methods. 1986;88:277–283.

    Article  PubMed  CAS  Google Scholar 

  79. Mitsuhata H, Shimizu R, Yokoyama MM. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharmacol. 1995;17:529–534.

    Article  PubMed  CAS  Google Scholar 

  80. Matsuoka H, Kurosawa S, Horinouchi T, Kato M, Hashimoto Y. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology. 2001;95:1467–1472.

    Article  PubMed  CAS  Google Scholar 

  81. Loop T, Dovi-Akue D, Frick M, Roesslein M, Egger L, Humar M, Hoetzel A, Schmidt R, Borner C, Pahl H, Geiger KK, Pannen BHJ. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 2005;102:1147–1157.

    Article  PubMed  CAS  Google Scholar 

  82. Green DR. Overview: apoptotic signaling pathway in the immune system. Immunol Rev. 2003;193:5–9.

    Article  PubMed  CAS  Google Scholar 

  83. M’Bemba-Meka P, Lemieux N, Chakrabarti SK. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in nickel subsulfide-induced human lymphocyte death in vitro. Sci Total Environ. 2006;369:21–34.

    Article  PubMed  CAS  Google Scholar 

  84. Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, Kaufmann SH. Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem. 2007;282:8860–8872.

    Article  PubMed  CAS  Google Scholar 

  85. Kasahara Y, Iwai K, Yachie A, Ohta K, Konno A, Seki H, Miyazaki T, Taniguchi N. Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood. 1997;89:1748–1753.

    PubMed  CAS  Google Scholar 

  86. Gwinn M, Vallyathan V. Respiration burst: role in signal transduction in alveolar macrophages. J Toxicol Environ Health Part B. 2006;9:27–39.

    Article  CAS  Google Scholar 

  87. Loop T, Scheiermann P, Doviakue D, Musshoff F, Humar M, Roesslein M, Hoetzel A, Schmidt R, Madea B, Geiger K, Pahl H, Pannen BH. Sevoflurane inhibits phorbol-myristate-acetate-induced activator protein-1 activation in human T lymphocytes in vitro: potential role of the p38-stress kinase pathway. Anesthesiology. 2004;101:710–721.

    Article  PubMed  CAS  Google Scholar 

  88. De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005;100:1584–1593.

    Article  PubMed  Google Scholar 

  89. Zaugg M, Schaub M. Signaling and cellular mechanisms in cardiac protection by ischemic and pharmacological preconditioning. J Muscle Res Cell Motil. 2003;24:219–249.

    Article  PubMed  CAS  Google Scholar 

  90. Aarts L, van der Hee R, Dekker I, de Jong J, Langermeiger H, Bast A. The widely used anesthetic agent propofol can replace α-tocopherol as an antioxidant. FEBS Lett. 1995;357:83–85.

    Article  PubMed  CAS  Google Scholar 

  91. Heine J, Leuwer M, Scheinichen D, Arseniev L, Jaeger K, Piepenbrock S. Flow cytometry evaluation of the in vitro influence of four i.v. anaesthetics on respiratory burst of neutrophils. Br J Anaesth. 1996;77:387–392.

    PubMed  CAS  Google Scholar 

  92. Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, Niwa Y. Propofol inhibits human neutrophil functions. Anesth Analg. 1998;87:695–700.

    Article  PubMed  CAS  Google Scholar 

  93. Heller A, Heller S, Blecken S, Urbaschek R, Koch T. Effects of intravenous anesthetics on bacterial elimination in human blood in vitro. Acta Anaesthesiol Scand. 1998;42:518–526.

    PubMed  CAS  Google Scholar 

  94. Krumholz W, Endrass J, Hempelmann G. Propofol inhibits phagocytosis and killing of Staphylococcus aureus and Escherichia coli by polymorphonuclear leukocytes in vitro. Can J Anaesth. 1994;41:446–449.

    PubMed  CAS  Google Scholar 

  95. Heine J, Jaeger K, Osthaus A, Weingaertner N, Munte S, Piepenbrock S, Leuwer M. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br J Anaesth. 2000;85:424–430.

    PubMed  CAS  Google Scholar 

  96. Davidson JA, Boom SJ, Pearsall FJ, Zhang P, Ramasay G. Comparison of the effects of four i.v. anaesthetic agents on polymorphonuclear leukocyte function. Br J Anaesth. 1995;74:315–318.

    Article  PubMed  CAS  Google Scholar 

  97. O’Donnell NG, McSharry CP, Wilkinson PC, Asbury AJ. Comparison of the inhibitory effects of propofol, thiopentone and midazolam on neutrophil polarization in vitro in the presence or absence of human serum albumin. Br J Anaesth. 1992;69:70–74.

    Article  PubMed  CAS  Google Scholar 

  98. Huettemann E, Jung A, Vogelsang H, Hou N, Sakka SG. Effects of propofol vs methohexital on neutrophil function and immune status in critically ill patients. J Anesth. 2006;20:86–91.

    Article  PubMed  Google Scholar 

  99. Galley HF, Dubbels AM, Webster NR. The effects of midazolam and propofol on interleukin-8 from human polymorphonuclear leukocytes. Anesth Analg. 1998;86:1289–1293.

    Article  PubMed  CAS  Google Scholar 

  100. Nagata T, Kansha M, Irita K, Takahashi S. Propofol inhibits FMLP-stimulated phosphorylation of p42 mitogen-activated protein kinase and chemotaxis in human neutrophils. Br J Anaesth. 2001;86:853–858.

    Article  PubMed  CAS  Google Scholar 

  101. Wu GJ, Tai YT, Chen TL, Lin LL, Ueng YF, Chen RM. Propofol specifically inhibits mitochondrial membrane potential but not complex I NADH dehydrogenase activity, thereby reducing cellular ATP biosynthesis and migration of macrophages. Ann NY Acad Sci. 2005;1042:168–176.

    Article  PubMed  CAS  Google Scholar 

  102. Chen RM, Wu CH, Chang HC, Wu GJ, Lin YL, Sheu JR, Chen TL. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology. 2003;98:1178–1185.

    Article  PubMed  CAS  Google Scholar 

  103. Chang H, Tsai SY, Chang Y, Chen TL, Chen RM. Therapeutic concentration of propofol protects mouse macrophages from nitric oxide-indiced cell death and apoptosis. Can J Anaesth. 2002;49:477–480.

    PubMed  Google Scholar 

  104. Chen RM, Wu GJ, Tai YT, Sun WZ, Lin YL, Jean WC, Chen TL. Propofol reduces nitric oxide biosynthesis in lipopolysaccharide-activated macrophages by downregulating the expression of inducible nitric oxide synthase. Arch Toxicol. 2003;77:418–423.

    Article  PubMed  CAS  Google Scholar 

  105. Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Chang HC, Wu CH. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann NY Acad Sci. 2005;1042:262–271.

    Article  PubMed  CAS  Google Scholar 

  106. Rossano F, Tufano R, Cipollaro de L’Ero G, Servillo G, Baroni A, Tufano MA. Anesthetic agents induce human mononuclear leucocytes to release cytokines. Immunopharmacol Immunotoxicol. 1992;14:439–450.

    Article  PubMed  CAS  Google Scholar 

  107. Brand JM, Frohn C, Luhm J, Kirchner H, Schmucker P. Early alterations in the number of circulating lymphocyte subpopulations and enhanced proinflammatory immune response during opioid-based general anesthesia. Shock. 2003;20:213–217.

    Article  PubMed  Google Scholar 

  108. Pirttinkangas CO, Perttila J, Salo M. Propofol emulsion reduces proliferative responses of lymphocytes from intensive care patients. Intensive Care Med. 1993;19:299–302.

    Article  Google Scholar 

  109. Devlin EG, Clarke RS, Mirakhur RK, McNeill TA. Effect of four i.v. induction agents on T-lymphocyte proliferations to PHA in vitro. Br J Anaesth. 1994;73:315–317.

    Article  PubMed  CAS  Google Scholar 

  110. Salo M, Pirttikangas CO, Pulkki K. Effects of propofol emulsion and thiopentone on T helper cell type-1/type-2 balance in vitro. Anesthesia. 1997;52:341–344.

    Article  CAS  Google Scholar 

  111. Song HK, Jeong DC. The effect of propofol on cytotoxicity and apoptosis of lipopolysaccharide-treated mononuclear cells and lymphocytes. Anesth Analg. 2004;98:1724–1728.

    Article  PubMed  CAS  Google Scholar 

  112. Mozrzmas JW, Teisseyre A, Vittur F. Propofol blocks voltagegated potassium channels in human T lymphocytes. Biochem Pharmacol. 1996;52:843–849.

    Article  Google Scholar 

  113. Loop T, Liu Z, Humar M, Hoetzel A, Benzing A, Pahl HL, Geiger KK, Pannen BHJ. Thiopental inhibits the activation of nuclear factor κB. Anesthesiology. 2002;96:1202–1213.

    Article  PubMed  CAS  Google Scholar 

  114. Larsen B, Hoff G, Wilhelm W, Buchinger H, Wanner G, Bauer M. Effect of intravenous anesthetics on spontaneous and endotoxin-stimulated cytokine response in cultured human whole blood. Anesthesiology. 1998;89:1218–1227.

    Article  PubMed  CAS  Google Scholar 

  115. Carr DJ, Rogers TJ, Weber RJ. The relevance of opioid receptors on immunocompetence and immune homeostasis. Proc Soc Exp Biol Med. 1996;213:248–257.

    PubMed  CAS  Google Scholar 

  116. Flores LR, Dretchen KL, Bayer BM. Potential role of the autonomic nervous system in the immunosuppressive effects of the acute morphine administration. Eur J Pharmacol. 1996;318:437–446.

    Article  PubMed  CAS  Google Scholar 

  117. Freier DO, Fucks BA. A mechanism of action for morphine induced immunosuppression: corticosterone mediates morphine induced suppression of NK cell activity. J Pharmacol Exp Ther. 1993;270:1127–1133.

    Google Scholar 

  118. Bryanyt HU, Bernton EW, Kenner JR, Holaday JW. Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology. 1991;128:3253–3258.

    Google Scholar 

  119. Mellon RD, Bayer BM. Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanisms of action. J Neuroimmunol. 1998;83:19–28.

    Article  PubMed  CAS  Google Scholar 

  120. Smith EM. Opioid peptides in immune cells. Adv Exp Med Biol. 2003;521:51–68.

    PubMed  CAS  Google Scholar 

  121. Sacerdote P, Limiroli E, Gaspani L. Experimental evidence for imunomodulatory effects of opioids. Adv Exp Med Biol. 2003;521:106–116.

    PubMed  CAS  Google Scholar 

  122. Welters ID, Fimiani C, Bilfinger TV, Stefano GB. NF-κB, nitric oxide and opiate signaling. Med Hypotheses. 2000;54:263–268.

    Article  PubMed  CAS  Google Scholar 

  123. Welters ID, Menzebach A, Goumon Y, Langefeld TW, Teschemacher H, Hempelmann G, Stefano BG. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu(3) opiate receptor-dependent mechanism. J Neuroimmunol. 2000;111:139–145.

    Article  PubMed  CAS  Google Scholar 

  124. Roy S, Ramakrishnan S, Loh HH, Lee NM. Chronic morphine treatment selectively suppresses macrophage colony formation in bone marrow. Eur J Pharmacol. 1991;195:359–363.

    Article  PubMed  CAS  Google Scholar 

  125. Eisenstein TK, Hillburger ME. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell population. J Neuroimmunol. 1998;83:36–44.

    Article  PubMed  CAS  Google Scholar 

  126. Yeager MP, Colacchio TA, Yu CT, Hildebrandt L, Howell AL, Weiss J, Guyre PM. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteers. Anesthesiology. 1995;83:500–508.

    Article  PubMed  CAS  Google Scholar 

  127. Bryant HU, Roudebush RE. Suppressive effects of morphine pellet implants on in vivo parameters of immune function. J Pharmacol Exp Ther. 1990;255:410–414.

    PubMed  CAS  Google Scholar 

  128. Lysle DT, Coussons ME, Watts VJ, Bennett EH, Dykstra LA. Morphine-induced alterations of immune status: dose dependency, compartment specificity and antagonism by naltrexone. J Pharmacol Exp Ther. 1993;265:1071–1078.

    PubMed  CAS  Google Scholar 

  129. Roy S, Charboneau RG, Barke RA. Morphine synergizes with lipopolysaccharide in a chronic endotoxemia model. J Neuroimmunol. 1999;95:107–114.

    Article  PubMed  CAS  Google Scholar 

  130. Casalinuovo IA, Graziano R, Di Francesco P. Cytokine secretion by murine spleen cells after inactivated Candida albicans immunization. Efect of cocaine and morphine treatment. Immunopharmacol Immunotoxicol. 2000;22:35–48.

    Article  PubMed  CAS  Google Scholar 

  131. Yin D, Mufson RA, Wang R, Shi Y. Fas-mediated cell death promoted by opioids. Nature. 1999;397:218.

    Article  PubMed  CAS  Google Scholar 

  132. Jaeger K, Scheinichen D, Heine J, Andre M, Bund M, Piepenbrock S, Leuwer M. Remifentanil, fentanyl and alfentanil have no effect on the respiratory burst of neutrophils in vitro. Acta Anaesthesiol Scand. 1998;42:1110–1113.

    PubMed  CAS  Google Scholar 

  133. Krumholz W, Endrass J, Hemplemann G. Inhibition of phagocytosis and killing of bacteria by anaesthetic agents in vitro. Br J Anaesth. 1995;75:66–70.

    PubMed  CAS  Google Scholar 

  134. Shavit Y, Ben-Eliyahu S, Zeidel A, Beilin B. Effects of fentanyl on natural killer cell activity and on resistance to tumor metstasis in rats. Dose and timing study. Neuroimmunomodulation. 2004;11:255–260.

    Article  PubMed  CAS  Google Scholar 

  135. Yeager MP, Procopio MA, DeLeo JA, Arruda JL, Hildebrandt L, Howell AL. Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD16+ lymphocytes in humans. Anesth Analg. 2002;94:94–99.

    Article  PubMed  CAS  Google Scholar 

  136. Jacobs R, Karst M, Scheinichen D, Bevilacqua C, Schneider Udo, Heine J, Schedlowski M, Schmidt RE. Effects of fentanyl on cellular immune functions in man. Int J Immunopharmacol. 1999;21:445–454.

    Article  PubMed  CAS  Google Scholar 

  137. Bilfinger TV, Fimiani C, Stefano GB. Morphine’s immunoregulatory actions are not shared by fentanyl. Int J Cardiol. 1998;64 (Suppl 1):S61–S66.

    Article  PubMed  Google Scholar 

  138. Tønnesen E, Wahlgreen C. Influence of extradural and general anaesthesia on natural killer cell activity and lymphocyte subpopulations in patients undergoing hysterectomy. Br J Anaesth. 1988;60:500–507.

    Article  PubMed  Google Scholar 

  139. Høgevold HE, Lyberg T, Kähler H, Haug E, Reikerås O. Changes in plasma IL-1-βTNF-α and IL-6 after total hip replacement surgery in general or regional anesthesia. Cytokine. 2000;12:1156–1159.

    Article  PubMed  CAS  Google Scholar 

  140. Kehlet H. Manipulation of the metabolic response in clinical practice. World J Surg. 2000;24:690–695.

    Article  PubMed  CAS  Google Scholar 

  141. Hole A, Unsgaard G. The effect of epidural and general anaesthesia on lymphocyte functions during and after major orthopaedic surgery. Acta Anaesthesiol Scand. 1983;27:135–141.

    PubMed  CAS  Google Scholar 

  142. Whelan P, Morris PJ. Immunological responsiveness after transurethral resection of the prostate: general versus spinal anaesthetic. Clin Exp Immunol. 1982;48:611–618.

    PubMed  CAS  Google Scholar 

  143. Wada H, Seki S, Takahahi T, Kawarabayashi N, Higuchi H, Habu Y, Sugahara S, Kazama T. Combined spinal and general anesthesia attenuates liver metastasis by preserving Th1/Th2 cytokine balance. Anesthesiology. 2007;106:499–506.

    Article  PubMed  CAS  Google Scholar 

  144. Liu S, Carpenter RL, Neal JM. Epidural anesthesia and analgesia. Their role in postoperative outcome. Anesthesiology. 1995;82:1474–1506.

    Article  PubMed  CAS  Google Scholar 

  145. Schneemilch CE, Ittenson A, Ansorge S, Hachenberg T, Bank U. Effect of 2 anesthetic techniques on the postoperative pro-inflammatory and anti-inflammatory cytokine response and cellular immune function to minor surgery. J Clin Anesth. 2005;17:517–527.

    Article  PubMed  Google Scholar 

  146. Crozier TA, Müller JE, Quittkat D, Sydow M, Wuttke W, Kettler D. Effect of anaesthesia on the cytokine responses to abdominal surgery. Br J Anaesth. 1994;72:280–285.

    Article  PubMed  CAS  Google Scholar 

  147. Pirttikangas CO, Salo M, Mansikka M, Grönroos J, Pulkki K, Peltola O. The influence of anaesthetic technique upon the immune response to hysterectomy. A comparison of propofol infusion and isoflurane. Anaesthesia. 1995;50:1056–1061.

    Article  PubMed  CAS  Google Scholar 

  148. Kotani N, Hashimoto H, Sessler DI, Kikuchi A, Suzuki A, Takahashi S, Muraoka M, Matsuki A. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology. 1998;89:1125–1132.

    Article  PubMed  CAS  Google Scholar 

  149. Inada T, Yamanouchi Y, Jomura S, Sakamoto S, Takahashi M, Kambara T, Shingu K. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004;59:954–959.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review article was invited by the Editorial Board members of the Journal of Anesthesia and was peer-reviewed as were the other articles in this journal.

About this article

Cite this article

Kurosawa, S., Kato, M. Anesthetics, immune cells, and immune responses. J Anesth 22, 263–277 (2008). https://doi.org/10.1007/s00540-008-0626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-008-0626-2

Key words

Navigation