Skip to main content

Advertisement

Log in

Toll-like receptor 4 activation in Barrett’s esophagus results in a strong increase in COX-2 expression

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Barrett’s esophagus (BE) is known to progress to esophageal adenocarcinoma in a setting of chronic inflammation. Toll-like receptor (TLR) 4 has been linked to inflammation-associated carcinogenesis. We aimed to determine the expression and functional activity of TLR4 in the esophagus and whether TLR4 activation in BE could promote carcinogenesis by inducing COX-2 expression.

Methods

TLR4 expression in esophageal adenocarcinoma, BE, duodenum, reflux esophagitis and normal squamous esophagus biopsies was assessed using real-time PCR and validated by in situ hybridization and immunohistochemistry. Ex vivo cultures of BE, duodenum and normal squamous esophagus biopsies and a BE cell line (BAR-T) were stimulated with the TLR4 agonist lipopolysaccharide (LPS). To evaluate the effect of TLR4 activation, NF-κB activation, IL8 secretion and expression and COX-2 expression were determined.

Results

TLR4 expression was significantly increased in esophageal adenocarcinoma, BE, duodenum and reflux esophagitis compared to normal squamous esophagus. LPS stimulation resulted in NF-κB activation and a dose-dependent increase of IL8 secretion and mRNA expression. The induction of IL8 was more evident in BE compared to normal squamous esophagus. Upon LPS stimulation, COX-2 expression increased significantly in ex vivo cultured BE biopsies, which was observed in both epithelium and lamina propria cells. However, no effect was found in duodenum and normal squamous esophagus biopsies.

Conclusion

TLR4 activation in BE results in a strong increase in COX-2 and may contribute to malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BE:

Barrett’s esophagus

COX-2:

Cyclooxygenase-2

EAC:

Esophageal adenocarcinoma

ELISA:

Enzyme-linked immunosorbent assay

HGD:

High-grade dysplasia

IL8:

Interleukin 8

IHC:

Immunohistochemistry

ISH:

In situ hybridization

FBS:

Fetal bovin serum

IBD:

Inflammatory bowel diseases

MAPK:

Mitogen-activated protein kinases

MSK:

Mitogen- and stress-activated protein kinase

LGD:

Low-grade dysplasia

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor–κB

PBS:

Phosphate buffered saline

PGE2:

Prostaglandin E2

PPIs:

Proton pump inhibitors

Q-RT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

RE:

Reflux esophagitis

SQ:

Normal squamous esophagus

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor alpha

Tollip:

Toll interacting protein

References

  1. Guillem PG. How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig Dis Sci. 2005;50:415–24.

    Article  PubMed  Google Scholar 

  2. Nicholson A, Jankowski J. Acid reflux and oesophageal cancer. Recent Results Cancer Res. 2011;185:65–82.

    Article  CAS  PubMed  Google Scholar 

  3. Bhat S, Coleman HG, Yousef F, Johnston BT, McManus DT, Gavin AT, et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst. 2011;103:1049–57.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Desai TK, Krishnan K, Samala N, Singh J, Cluley J, Perla S, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut. 2012;61:970–6.

    Article  PubMed  Google Scholar 

  5. Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–83.

    Article  CAS  PubMed  Google Scholar 

  6. Pohl H, Sirovich B, Welch HG. Esophageal adenocarcinoma incidence: are we reaching the peak? Cancer Epidemiol Biomarkers Prev. 2010;19:1468–70.

    Article  PubMed  Google Scholar 

  7. van Soest EM, Dieleman JP, Siersema PD, Sturkenboom MC, Kuipers EJ. Increasing incidence of Barrett’s oesophagus in the general population. Gut. 2005;54:1062–6.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hulscher JB, van Sandick JW, de Boer AG, Wijnhoven BP, Tijssen JG, Fockens P, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347:1662–9.

    Article  PubMed  Google Scholar 

  9. van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, et al. A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology. 2005;129:1274–81.

    Article  PubMed  Google Scholar 

  10. van Baal JW, Milana F, Rygiel AM, Sondermeijer CM, Spek CA, Bergman JJ, et al. A comparative analysis by SAGE of gene expression profiles of esophageal adenocarcinoma and esophageal squamous cell carcinoma. Cell Oncol. 2008;30:63–75.

    PubMed  Google Scholar 

  11. Fukata M, Abreu MT. Role of Toll-like receptors in gastrointestinal malignancies. Oncogene. 2008;27:234–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ioannou S, Voulgarelis M. Toll-like receptors, tissue injury, and tumourigenesis. Mediators Inflamm. 2010: pii: 581837

  13. O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177–97.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J Immunol. 2005;174:4453–60.

    Article  CAS  PubMed  Google Scholar 

  15. Fukata M, Abreu MT. Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol. 2009;9:680–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133:1869–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gribar SC, Anand RJ, Sodhi CP, Hackam DJ. The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc Biol. 2008;83:493–8.

    Article  CAS  PubMed  Google Scholar 

  18. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68:7010–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Buttar NS, Wang KK, Leontovich O, Westcott JY, Pacifico RJ, Anderson MA, et al. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology. 2002;122:1101–12.

    Article  CAS  PubMed  Google Scholar 

  20. Kaur BS, Khamnehei N, Iravani M, Namburu SS, Lin O, Triadafilopoulos G. Rofecoxib inhibits cyclooxygenase 2 expression and activity and reduces cell proliferation in Barrett’s esophagus. Gastroenterology. 2002;123:60–7.

    Article  CAS  PubMed  Google Scholar 

  21. Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G. Cyclooxygenase 2 expression in Barrett’s esophagus and adenocarcinoma: ex vivo induction by bile salts and acid exposure. Gastroenterology. 2000;118:487–96.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Wo JM, Ray MB, Jones W, Su RR, Ellis S, et al. Cyclooxygenase-2 and epithelial growth factor receptor up-regulation during progression of Barrett’s esophagus to adenocarcinoma. World J Gastroenterol. 2006;12:928–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Majka J, Rembiasz K, Migaczewski M, Budzynski A, Ptak-Belowska A, Pabianczyk R, et al. Cyclooxygenase-2 (COX-2) is the key event in pathophysiology of Barrett’s esophagus. Lesson from experimental animal model and human subjects. J Physiol Pharmacol. 2010;61:409–18.

    CAS  PubMed  Google Scholar 

  24. Sheyhidin I, Nabi G, Hasim A, Zhang RP, Ainiwaer J, Ma H, et al. Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17:3745–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jaiswal KR, Morales CP, Feagins LA, Gandia KG, Zhang X, Zhang HY, et al. Characterization of telomerase-immortalized, non-neoplastic, human Barrett’s cell line (BAR-T). Dis Esophagus. 2007;20:256–64.

    Article  CAS  PubMed  Google Scholar 

  26. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol. 2006;176:3070–9.

    Article  CAS  PubMed  Google Scholar 

  27. Garcia MG, Alaniz L, Lopes EC, Blanco G, Hajos SE, Alvarez E. Inhibition of NF-kappaB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leuk Res. 2005;29:1425–34.

    Article  CAS  PubMed  Google Scholar 

  28. van Baal JW, Verbeek RE, Bus P, Fassan M, Souza RF, Rugge M, et al. microRNA-145 in Barrett’s oesophagus: regulating BMP4 signalling via GATA6. Gut. 2013;62:664–75.

    Article  PubMed  Google Scholar 

  29. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.

    Google Scholar 

  30. Budde BS, Namavar Y, Barth PG, Poll-The BT, Nurnberg G, Becker C, et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet. 2008;40:1113–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002;61:1013–21.

    CAS  PubMed  Google Scholar 

  32. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007;20:947–56.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S, et al. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res. 2011;71:1989–98.

    Article  CAS  PubMed  Google Scholar 

  34. Sitarz R, Leguit RJ, de Leng WW, Morsink FH, Polkowski WP, Maciejewski R, et al. Cyclooxygenase-2 mediated regulation of E-cadherin occurs in conventional but not early-onset gastric cancer cell lines. Cell Oncol. 2009;31:475–85.

    CAS  PubMed  Google Scholar 

  35. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol. 2000;2:346–51.

    Article  CAS  PubMed  Google Scholar 

  36. Didierlaurent A, Brissoni B, Velin D, Aebi N, Tardivel A, Kaslin E, et al. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol. 2006;26:735–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhang G, Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem. 2002;277:7059–65.

    Article  CAS  PubMed  Google Scholar 

  38. Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene. 1999;18:6867–74.

    Article  CAS  PubMed  Google Scholar 

  39. Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut. 2007;56:763–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lim DM, Narasimhan S, Michaylira CZ, Wang ML. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2009;297:G1172–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Uehara A, Fujimoto Y, Fukase K, Takada H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol. 2007;44:3100–11.

    Article  CAS  PubMed  Google Scholar 

  42. Jankowski JA, Wright NA, Meltzer SJ, Triadafilopoulos G, Geboes K, Casson AG, et al. Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol. 1999;154:965–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Fukata M, Shang L, Santaolalla R, Sotolongo J, Pastorini C, Espana C, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2011;17:1464–73.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis. 2007;45:29–38.

    Article  PubMed  Google Scholar 

  45. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–97.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and barrett esophagus. Clin Cancer Res. 2012;18:2138–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Testro AG, Visvanathan K. Toll-like receptors and their role in gastrointestinal disease. J Gastroenterol Hepatol. 2009;24:943–54.

    Article  CAS  PubMed  Google Scholar 

  48. Faried A, Sohda M, Nakajima M, Miyazaki T, Kato H, Kuwano H. Expression of heat-shock protein Hsp60 correlated with the apoptotic index and patient prognosis in human oesophageal squamous cell carcinoma. Eur J Cancer. 2004;40:2804–11.

    Article  CAS  PubMed  Google Scholar 

  49. Ostrowski J, Mikula M, Karczmarski J, Rubel T, Wyrwicz LS, Bragoszewski P, et al. Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics. J Mol Med (Berl.). 2007;85:733–43.

    Article  CAS  PubMed  Google Scholar 

  50. Dziarski R, Wang Q, Miyake K, Kirschning CJ, Gupta D. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J Immunol. 2001;166:1938–44.

    Article  CAS  PubMed  Google Scholar 

  51. Lee HK, Lee J, Tobias PS. Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J Immunol. 2002;168:4012–7.

    Article  CAS  PubMed  Google Scholar 

  52. Que-Gewirth NL, Ribeiro AA, Kalb SR, Cotter RJ, Bulach DM, Adler B, et al. A methylated phosphate group and four amide-linked acyl chains in leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J Biol Chem. 2004;279:25420–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87:989–99.

    Article  CAS  PubMed  Google Scholar 

  54. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol. 2000;165:618–22.

    Article  CAS  PubMed  Google Scholar 

  55. Lo WK, Chan WW. Proton pump inhibitor use and the risk of small intestinal bacterial overgrowth: a meta-analysis. Clin Gastroenterol Hepatol. 2013;11:483–90.

    Article  CAS  PubMed  Google Scholar 

  56. Orlando RC. Why is the high grade inhibition of gastric acid secretion afforded by proton pump inhibitors often required for healing of reflux esophagitis? An epithelial perspective. Am J Gastroenterol. 1996;91:1692–6.

    CAS  PubMed  Google Scholar 

  57. Vesper BJ, Jawdi A, Altman KW, Haines GK 3rd, Tao L, Radosevich JA. The effect of proton pump inhibitors on the human microbiota. Curr Drug Metab. 2009;10:84–9.

    Article  CAS  PubMed  Google Scholar 

  58. Pimentel-Nunes P, Goncalves N, Boal-Carvalho I, Afonso L, Lopes P, Roncon-Albuquerque R, et al. Decreased Toll-interacting protein and peroxisome proliferator-activated receptor gamma are associated with increased expression of Toll-like receptors in colon carcinogenesis. J Clin Pathol. 2012;65:302–8.

    Article  CAS  PubMed  Google Scholar 

  59. Pimentel-Nunes P, Goncalves N, Boal-Carvalho I, Afonso L, Lopes P, Roncon-Albuquerque R Jr, et al. Helicobacter pylori induces increased expression of Toll-like receptors and decreased Toll-interacting protein in gastric mucosa that persists throughout gastric carcinogenesis. Helicobacter. 2013;18:22–32.

    Article  CAS  PubMed  Google Scholar 

  60. Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, et al. Intracellular trafficking of interleukin-1 receptor I requires Tollip. Curr Biol. 2006;16:2265–70.

    Article  CAS  PubMed  Google Scholar 

  61. Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K. Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem. 2004;279:24435–43.

    Article  CAS  PubMed  Google Scholar 

  62. Oh DS, DeMeester SR, Vallbohmer D, Mori R, Kuramochi H, Hagen JA, et al. Reduction of interleukin 8 gene expression in reflux esophagitis and Barrett’s esophagus with antireflux surgery. Arch Surg. 2007;142:554–9.

    Article  CAS  PubMed  Google Scholar 

  63. Abdel-latif MM, O’Riordan J, Windle HJ, Carton E, Ravi N, Kelleher D, et al. NF-kappaB activation in esophageal adenocarcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Ann Surg. 2004;239:491–500.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Fitzgerald RC, Abdalla S, Onwuegbusi BA, Sirieix P, Saeed IT, Burnham WR, et al. Inflammatory gradient in Barrett’s oesophagus: implications for disease complications. Gut. 2002;51:316–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. O’Riordan JM, Abdel-latif MM, Ravi N, McNamara D, Byrne PJ, McDonald GS, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100:1257–64.

    Article  PubMed  Google Scholar 

  66. Hormi-Carver K, Zhang X, Zhang HY, Whitehead RH, Terada LS, Spechler SJ, et al. Unlike esophageal squamous cells, Barrett’s epithelial cells resist apoptosis by activating the nuclear factor-kappaB pathway. Cancer Res. 2009;69:672–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lind A, Siersema PD, Kusters JG, Van der Linden JA, Knol EF, Koenderman L. The immune cell composition in Barrett’s metaplastic tissue resembles that in normal duodenal tissue. PLoS One. 2012;7:e33899.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–44.

    Article  CAS  PubMed  Google Scholar 

  69. MacKenzie KF, Van Den Bosch MW, Naqvi S, Elcombe SE, McGuire VA, Reith AD, et al. MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop. Mol Cell Biol. 2013;33:1456–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Wittebole X, Castanares-Zapatero D, Laterre PF. Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm. 2010:568396.

  71. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355:873–84.

    Article  CAS  PubMed  Google Scholar 

  72. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med. 2000;343:1520–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Edward E. Nieuwenhuis (General Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands) for the discussion and Dr. Folkert H.M. Morsink (Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands) for the assistance in COX-2 IHC.

Conflict of interest

PD Siersema has received unrestricted research grant support from AstraZeneca B.V., The Netherlands and Janssen B.V., The Netherlands. The other authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romy E. Verbeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, R.E., Siersema, P.D., Ten Kate, F.J. et al. Toll-like receptor 4 activation in Barrett’s esophagus results in a strong increase in COX-2 expression. J Gastroenterol 49, 1121–1134 (2014). https://doi.org/10.1007/s00535-013-0862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0862-6

Keywords

Navigation