Skip to main content
Log in

Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Recently, metabolome analysis has been increasingly applied to biomarker detection and disease diagnosis in medical studies. Metabolome analysis is a strategy for studying the characteristics and interactions of low molecular weight metabolites under a specific set of conditions and is performed using mass spectrometry and nuclear magnetic resonance spectroscopy. There is a strong possibility that changes in metabolite levels reflect the functional status of a cell because alterations in their levels occur downstream of DNA, RNA, and protein. Therefore, the metabolite profile of a cell is more likely to represent the current status of a cell than DNA, RNA, or protein. Thus, owing to the rapid development of mass spectrometry analytical techniques metabolome analysis is becoming an important experimental method in life sciences including the medical field. Here, we describe metabolome analysis using liquid chromatography–mass spectrometry, gas chromatography–mass spectrometry (GC–MS), capillary electrophoresis–mass spectrometry, and matrix assisted laser desorption ionization–mass spectrometry. Then, the findings of studies about GC–MS-based metabolome analysis of gastroenterological diseases are summarized, and our research results are also introduced. Finally, we discuss the realization of disease diagnosis by metabolome analysis. The development of metabolome analysis using mass spectrometry will aid the discovery of novel biomarkers, hopefully leading to the early detection of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NMR:

Nuclear magnetic resonance

GC–MS:

Gas chromatography–mass spectrometry

LC–MS:

Liquid chromatography–mass spectrometry

CE–MS:

Capillary electrophoresis–mass spectrometry

MALDI–MS:

Matrix assisted laser desorption ionization–mass spectrometry

HPLC:

High-performance liquid chromatography

PCA:

Principal component analysis

PLS–DA:

Partial least squares–discriminant analysis

HMDB:

Human metabolome database

TICC:

Total ion current chromatogram

EI:

Electron impact

AMDIS:

Automated Mass Spectral Deconvolution and Identification System

HMT:

Human Metabolome Technologies

TOF:

Time-of-flight

Q:

Quadrupole

IBD:

Inflammatory bowel disease

HBV:

Hepatitis B virus

DSS:

Dextran sulfate sodium

TCA:

Tricarboxylic acid

HUSERMET:

Human serum metabolome

UC:

Ulcerative colitis

CD:

Crohn’s disease

SCID:

Severe combined immunodeficiency disease

DEN:

Diethylnitrosamine

IL10:

Interleukin 10

References

  1. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–8.

    Article  PubMed  CAS  Google Scholar 

  2. Nambiar PR, Gupta RR, Misra V. An “Omics” based survey of human colon cancer. Mutat Res. 2010;693:3–18.

    Article  PubMed  CAS  Google Scholar 

  3. Rochfort S. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod. 2005;68:1813–20.

    Article  PubMed  CAS  Google Scholar 

  4. Lewen J, Jing C, Peiyuan Y, Xin L, Guowang X. Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metabolomics. 2008;4:183–9.

    Article  Google Scholar 

  5. Chen C, Shah YM, Morimura K, Krausz KW, Miyazaki M, Richardson TA, et al. Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab. 2008;7:135–47.

    Article  PubMed  CAS  Google Scholar 

  6. Japan Science and Technology Agency. http://www.cellmetabo.jst.go.jp/ja/jobrequest.html. Accessed 25 Oct 2005.

  7. Genome Alberta & Genome Canada. http://www.hmdb.ca/. Accessed 1 Jan 2006.

  8. METLIN. http://metlin.scripps.edu/metabo_search_alt2.php.

  9. MassBank Project. http://www.massbank.jp/. Accessed 2006.

  10. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.

    Article  PubMed  CAS  Google Scholar 

  11. National Institute of Standards and Technology. http://chemdata.nist.gov/mass-spc/amdis. Accessed 2003.

  12. Fukusaki E, Kobayashi A. Plant metabolomics: potential for practical operation. J Biosci Bioeng. 2005;100:347–54.

    Article  PubMed  CAS  Google Scholar 

  13. Pongsuwan W, Fukusaki E, Bamba T, Yonetani T, Yamahara T, Kobayashi A. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J Agric Food Chem. 2007;55:231–6.

    Article  PubMed  CAS  Google Scholar 

  14. Pongsuwan W, Bamba T, Yonetani T, Kobayashi A, Fukusaki E. Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J Agric Food Chem. 2008;56:744–50.

    Article  PubMed  CAS  Google Scholar 

  15. Pongsuwan W, Bamba T, Harada K, Yonetani T, Kobayashi A, Fukusaki E. High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). J Agric Food Chem. 2008;56:10705–8.

    Article  PubMed  CAS  Google Scholar 

  16. Tianniam S, Tarachiwin L, Bamba T, Kobayashi A, Fukusaki E. Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition. J Biosci Bioeng. 2008;105:655–9.

    Article  PubMed  CAS  Google Scholar 

  17. Nishiumi S, Shinohara M, Ikeda A, Yoshie T, Hatano N, Kakuyama S, et al. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics. 2010;6:518–28.

    Article  CAS  Google Scholar 

  18. Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, et al. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. In press.

  19. Shiomi Y, Nishiumi S, Ooi M, Hatano N, Shinohara M, Yoshie T, et al. A GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis. 2011;17:2261–74.

    Google Scholar 

  20. Ooi M, Nishiumi S, Yoshie T, Shiomi Y, Kohashi M, Fukunaga K, et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Imflamm Res. 2011;60:31–840.

    Google Scholar 

  21. Monton MR, Soga T. Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A. 2007;1168:237–46.

    Article  PubMed  CAS  Google Scholar 

  22. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281:16768–76.

    Article  PubMed  CAS  Google Scholar 

  23. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69:4918–25.

    Article  PubMed  CAS  Google Scholar 

  24. Setou M, Kurabe N. Mass microscopy: high-resolution imaging mass spectrometry. J Electron Microsc (Tokyo). 2011;60:47–56.

    Article  CAS  Google Scholar 

  25. Setou M, Shrivas K, Sroyraya M, Yang H, Sugiura Y, Moribe J, et al. Developments and applications of mass microscopy. Med Mol Morphol. 2010;43:1–5.

    Article  PubMed  Google Scholar 

  26. Fernández-Bañares F, Cabré E, González-Huix F, Gassull MA. Enteral nutrition as primary therapy in Crohn’s disease. Gut. 1994;35:55–9.

    Article  Google Scholar 

  27. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.

    Article  PubMed  CAS  Google Scholar 

  28. Wu H, Xue R, Lu C, Deng C, Liu T, Zeng H, et al. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:3111–7.

    Article  PubMed  CAS  Google Scholar 

  29. Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H, et al. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem. 2010;396:1385–95.

    Article  PubMed  CAS  Google Scholar 

  30. Qui Y, Cai G, Su M, Chen T, Liu Y, Xu Y, et al. Urinary metabolomic study on colorectal cancer. J Proteome Res. 2010;9:1627–34.

    Article  Google Scholar 

  31. Qui Y, Cai G, Su M, Chen T, Zeng X, Xu Y, et al. Serum metabolite profiling of human colorectal cancer using GC-TOF MS and UPLC-Q TOF MS. J Proteome Res. 2009;8:4844–50.

    Article  Google Scholar 

  32. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, et al. Metabolite profiling of colon carcinoma-deregulation of TCA cycle and amino acid turnover. Mol Cancer. 2008;7:72.

    Google Scholar 

  33. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009;8:352–61.

    Article  PubMed  CAS  Google Scholar 

  34. Ma Y, Liu W, Peng J, Huang L, Zhang P, Zhao X, et al. A pilot study of gas chromatograph/mass spectrometry-based serum metabolic profiling of colorectal cancer after operation. Mol Biol Rep. 2010;37:1403–11.

    Article  PubMed  CAS  Google Scholar 

  35. Kondo Y, Nishiumi S, Shinohara M, Hatano N, Ikeda A, Yoshie T, et al. Serum fatty acid profiling of colorectal cancer by gas chromatography/mass spectrometry. Biomark Med. 2011;5:451–60.

    Article  PubMed  Google Scholar 

  36. Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, et al. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:3061–8.

    Article  PubMed  CAS  Google Scholar 

  37. Wu H, Xue R, Dong L, Liu T, Deng C, Zeng H, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta. 2009;648:98–104.

    Article  PubMed  CAS  Google Scholar 

  38. Urayama S, Zou W, Brooks K, Tolstikov V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom. 2010;24:613–20.

    Article  PubMed  CAS  Google Scholar 

  39. Xue R, Dong L, Wu H, Liu T, Wang J, Shen X. Gas chromatography/mass spectrometry screening of serum metabolomic biomarkers in hepatitis B virus infected cirrhosis patients. Clin Chem Lab Med. 2009;47:305–10.

    Article  PubMed  CAS  Google Scholar 

  40. Hu JD, Tang HQ, Zhang Q, Fan J, Hong J, Gu JZ, et al. Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS. World J Gastroenterol. 2011;17:727–34.

    Article  PubMed  CAS  Google Scholar 

  41. Li ZF, Wang J, Huang C, Zhang S, Yang J, Jiang A, et al. Gas chromatography/time-of-flight mass spectrometry-based metabonomics of hepatocarcinoma in rats with lung metastasis: elucidation of the metabolic characteristics of hepatocarcinoma at formation and metastasis. Rapid Commun Mass Spectrom. 2010;24:2765–75.

    Article  PubMed  CAS  Google Scholar 

  42. Lin HM, Edmunds SJ, Helsby NA, Ferguson LR, Rowan DD. Nontargeted urinary metabolite profiling of a mouse model of Crohn’s disease. J Proteome Res. 2009;8:2045–57.

    Article  PubMed  CAS  Google Scholar 

  43. Lin HM, Barnett MP, Roy NC, Joyce NI, Zhu S, Armstrong K, et al. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn’s disease. J Proteome Res. 2010;9:1965–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants for the Global COE Program “Global Center of Excellence for Education and Research on Signal Transduction Medicine in the Coming Generation” from MEXT (Ministry of Education, Culture, Sports, Science, and Technology of Japan) (M. Y., N. H., and T. A.) and for the Young Researchers Training Program for Promoting Innovation from MEXT through the Special Coordination Fund for Promoting Science and Technology (S. N. and T. A.). We thank Shimadzu Co. for their technical support and helpful discussion.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, M., Hatano, N., Nishiumi, S. et al. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry. J Gastroenterol 47, 9–20 (2012). https://doi.org/10.1007/s00535-011-0493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0493-8

Keywords

Navigation