Skip to main content

Advertisement

Log in

CD133 expression is a potential prognostic indicator in intrahepatic cholangiocarcinoma

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background and aim

CD133 is one of the most important cancer-initiating (stem) cell markers and was confirmed to be expressed in solid cancers such as colon cancer. However, no one has investigated the role of CD133 in intrahepatic cholangiocarcinoma (IHCC). The aim of this study was to clarify the clinical role of CD133 expression in IHCC.

Patients and methods

Twenty-nine patients with IHCC who underwent hepatic resection at our institution were enrolled in this study. Expression of CD133 was examined using anti-CD133 antibody. Staining was observed in the cytoplasm of cancer cells and CD133-positive cells distributed in the whole tumor. The patients were divided into two groups: the CD133-positive group (n = 14) and CD133-negative group (n = 15), in which no staining of CD133 was observed. Clinicopathological factors including hypoxia-inducible factor-1α expression were compared between the two groups. The prognostic factors were investigated by multivariate analysis using Cox’s proportional hazard model.

Results

The 5-year survival rate in the CD133-positive group (8.0%) was worse than that in the CD133-negative group (57.0%). In the CD133-positive group, the incidence of intrahepatic metastasis and positive expression of hypoxia-inducible factor-1α tended to be higher than that in the CD133 negative group. The multivariate analysis revealed CD133 expression was an independent prognostic indicator in IHCC.

Conclusions

CD133 expression tended to be related to higher incidences of intrahepatic metastasis and positive expression of hypoxia-inducible factor-1α; furthermore, it was independently related to worse prognosis. Therefore, the CD133 expression is a potential prognostic indicator in IHCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IHCC:

Intrahepatic cholangiocarcinoma

HIF-1α:

Hypoxia-inducible factor-1α

PBS:

Phosphate-buffered saline

References

  1. Ikai I, Arii S, Ichida T, Okita K, Omata M, Kojiro M, et al. The liver cancer study group of Japan report of the 16th follow-up survey of primary liver cancer. Hepatol Res. 2005;32:163–72.

    Article  PubMed  Google Scholar 

  2. Yamamoto M, Ariizumi S. Intrahepatic recurrence after surgery in patients with intrahepatic cholangiocarcinoma. J Gastroenterol. 2006;2006(41):925–6.

    Article  Google Scholar 

  3. Thelen A, Scholz A, Benckert C, Schröder M, Weichert W, Wiedenmann B, et al. Microvessel density correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma. J Gastroenterol. 2008;43:959–66.

    Article  PubMed  Google Scholar 

  4. Miwa S, Miyagawa S, Kobayashi A, Akahane Y, Nakata T, Mihara M, et al. Predictive factors for intrahepatic cholangiocarcinoma recurrence in the liver following surgery. J Gastroenterol. 2006;41:893–900.

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi A, Miwa S, Nakata T, Miyagawa S. Disease recurrence patterns after R0 resection of hilar cholangiocarcinoma. Br J Surg. 2010;97:56–64.

    Article  CAS  PubMed  Google Scholar 

  6. Shimada M, Yamashita Y, Aishima S, Shirabe K, Takenaka K, Sugimachi K. Value of lymph node dissection during resection of intrahepatic cholangiocarcinoma. Br J Surg. 2001;88:1463–6.

    Article  CAS  PubMed  Google Scholar 

  7. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  Google Scholar 

  8. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand J, Begaud-Grimaud G, Bessette B, Verdier M, Battu S, Jauberteau MO. Cancer stem cells from human glioma cell line are resistant to Fas-induced apoptosis. Int J Oncol. 2009;34:717–27.

    CAS  PubMed  Google Scholar 

  10. Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:8205–12.

    Article  CAS  PubMed  Google Scholar 

  11. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  12. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007;67:3153–61.

    Article  CAS  PubMed  Google Scholar 

  13. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.

    Article  CAS  PubMed  Google Scholar 

  14. Maeda S, Shinchi H, Kurahara H, Mataki Y, Maemura K, Sato M, et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer. 2008;98:1389–97.

    Article  CAS  PubMed  Google Scholar 

  15. Horst D, Kriegl L, Engel J, Kirchner T, Jung A. CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer. 2008;99:1285–9.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto K, Arao T, Tanaka K, Kaneda H, Kudo K, Fujita Y, et al. mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res. 2009;69:7160–4.

    Article  CAS  PubMed  Google Scholar 

  17. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 alpha. Oncogene. 2009;28:3949–59.

    Article  CAS  PubMed  Google Scholar 

  18. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008;99:100–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kanamoto M, Yoshizumi T, Ikegami T, Imura S, Morine Y, Ikemoto T, et al. Cholangiolocellular carcinoma containing hepatocellular carcinoma and cholangiocellular carcinoma, extremely rare tumor of the liver: a case report. J Med Investig. 2008;55:161–5.

    Article  Google Scholar 

  20. Komuta M, Spee B, Vander Borght S, De Vos R, Verslype C, Aerts R, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology. 2008;47:1544–56.

    Article  CAS  PubMed  Google Scholar 

  21. Liver Cancer Study Group of Japan. Classification of primary liver cancer. 1st English ed. Tokyo: Kanehara; 1997.

  22. Becker L, Huang Q, Mashimo H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. ScientificWorldJournal. 2008;8:1168–76.

    Article  CAS  PubMed  Google Scholar 

  23. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  24. Batmunkh E, Shimada M, Morine Y, Imura S, Kanemura H, Arakawa Y, et al. Expression of hypoxia-inducible factor-1 alpha (HIF-1α) in patients with the gallbladder carcinoma. Int J Clin Oncol. 2010;15(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  25. Sumiyoshi Y, Kakeji Y, Egashira A, Mizokami K, Orita H, Maehara Y. Overexpression of hypoxia-inducible factor 1a and p53 is a marker for an unfavorable prognosis in gastric cancer. Clin Cancer Res. 2006;12:5112–7.

    Article  CAS  PubMed  Google Scholar 

  26. Miyake K, Yoshizumi T, Imura S, Sugimoto K, Batmunkh E, Kanemura H, et al. Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma correlation with poor prognosis with possible regulation. Pancreas. 2008;36:e1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Song W, Li H, Tao K, Li R, Song Z, Zhao Q, et al. Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract. 2008;62:1212–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A part of this study was presented at the ASCO-GI in San Francisco, 16–18 January 2009. This study was partly supported by a grant from the Cancer Research Project Cooperated by TAIHO Pharmaceutical Co., Ltd., and the University of Tokushima, and by the Japan Society for the Promotion of Science (grant-in-aid for scientific research B: no. 20390359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Shimada.

Additional information

M. Shimada and K. Sugimoto contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M., Sugimoto, K., Iwahashi, S. et al. CD133 expression is a potential prognostic indicator in intrahepatic cholangiocarcinoma. J Gastroenterol 45, 896–902 (2010). https://doi.org/10.1007/s00535-010-0235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0235-3

Keywords

Navigation