Skip to main content
Log in

Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Inward-rectifying potassium (Kir) channels allow more inward than outward potassium flux when channels are open in mammalian cells. At physiological resting membrane potentials, however, they predominantly mediate outward potassium flux and play important roles in regulating the resting membrane potential in diverse cell types and potassium secretion in the kidneys. Mutations of Kir channels cause human hereditary diseases collectively called Kir channelopathies, many of which are characterized by disorders of sodium and potassium homeostasis. Studies on these genetic Kir channelopathies have shed light on novel pathophysiological mechanisms, including renal sodium and potassium handling, potassium shifting in skeletal muscles, and aldosterone production in the adrenal glands. Here, we review several recent advances in Kir channels and their clinical implications in sodium and potassium homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham MR, Jahangir A, Alekseev AE, Terzic A (1999) Channelopathies of inwardly rectifying potassium channels. FASEB J 13:1901–1910

    CAS  PubMed  Google Scholar 

  2. Olson TM, Terzic A (2010) Human K (ATP) channelopathies: diseases of metabolic homeostasis. Pflugers Arch 460:295–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Maljevic S, Lerche H (2013) Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol 260:2201–2211

    Article  CAS  PubMed  Google Scholar 

  4. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  CAS  PubMed  Google Scholar 

  5. Liu TA, Chang HK, Shieh RC (2010) Extracellular K+ elevates outward currents through Kir2.1 channels by increasing single-channel conductance. Biochim Biophys Acta 1808:1772–1778

    Article  Google Scholar 

  6. Lu Z (2004) Mechanism of rectification in inward-rectifier K+ channels. Annu Rev Physiol 66:103–129

    Article  CAS  PubMed  Google Scholar 

  7. Oki K, Plonczynski MW, Lam ML, Gomez-Sanchez EP, Gomez-Sanchez CE (2012) The potassium channel, Kir3.4 participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line. Endocrinology 153:4328–4235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hebert SC (2003) Bartter syndrome. Curr Opin Nephrol Hypertens 12:527–532

    Article  PubMed  Google Scholar 

  9. Wang T (2012) Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction. Clin Exp Nephrol 16:49–54

    Article  PubMed  Google Scholar 

  10. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40:592–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhou X, Zhang Z, Shin MK, Horwitz SB, Levorse JM, Zhu L, Sharif-Rodriguez W, Streltsov DY, Dajee M, Hernandez M, Pan Y, Urosevic-Price O, Wang L, Forrest G, Szeto D, Zhu Y, Cui Y, Michael B, Balogh LA, Welling PA, Wade JB, Roy S, Sullivan KA (2013) Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure. Hypertension 62:288–294

    Article  CAS  PubMed  Google Scholar 

  12. Rodan AR, Huang CL (2009) Distal potassium handling based on flow modulation of maxi-K channel activity. Curr Opin Nephrol Hypertens 18:350–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rodan AR, Cheng CJ, Huang CL (2011) Recent advances in distal tubular potassium handling. Am J Physiol Ren Physiol 300:F821–F827

    Article  CAS  Google Scholar 

  14. Bailey MA, Cantone A, Yan Q, MacGregor GG, Leng Q, Amorim JB, Wang T, Hebert SC, Giebisch G, Malnic G (2006) Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int 70:51–59

    Article  CAS  PubMed  Google Scholar 

  15. Peters M, Ermert S, Jeck N, Derst C, Pechmann U, Weber S, Schlingmann KP, Seyberth HW, Waldegger S, Konrad M (2003) Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 64:923–932

    Article  CAS  PubMed  Google Scholar 

  16. Huang CL, Yang SS, Lin SH (2008) Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 17:519–525

    Article  PubMed  Google Scholar 

  17. Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP (2013) Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA 110:7838–7843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van’t Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, Hulton SA, Witzgall R, Ben-Zeev B, Howie AJ, Kleta R, Bockenhauer D, Warth R (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA 107:14490–14495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel S, Kurachi Y, Vandewalle A, Teulon J, Paulais M (2008) Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Ren Physiol 294:F1398–F1407

    Article  CAS  Google Scholar 

  21. Paulais M, Bloch-Faure M, Picard N, Jacques T, Ramakrishnan SK, Keck M, Sohet F, Eladari D, Houillier P, Lourdel S, Teulon J, Tucker SJ (2011) Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc Natl Acad Sci USA 108:10361–10366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    CAS  PubMed  Google Scholar 

  23. Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, Warth R, Reichold M (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 461:423–435

    Article  CAS  PubMed  Google Scholar 

  24. Scholl UI, Dave HB, Lu M, Farhi A, Nelson-Williams C, Listman JA, Lifton RP (2012) SeSAME/EAST syndrome–phenotypic variability and delayed activity of the distal convoluted tubule. Pediatr Nephrol 27:2081–2090

    Article  PubMed  Google Scholar 

  25. Williams DM, Lopes CM, Rosenhouse-Dantsker A, Connelly HL, Matavel A, O-Uchi J, McBeath E, Gray DA (2010) Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J Am Soc Nephrol 21:2117–2129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Huang C, Sindic A, Hill CE, Hujer KM, Chan KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF, Miller RT (2007) Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am J Physiol Ren Physiol 292:F1073–F1081

    Article  CAS  Google Scholar 

  27. Wang W, Lu M, Balazy M, Hebert SC (1997) Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am J Physiol 273:F421–F429

    CAS  PubMed  Google Scholar 

  28. Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptácek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  CAS  PubMed  Google Scholar 

  29. Ryan DP, da Silva MR, Soong TW, Fontaine B, Donaldson MR, Kung AW, Jongjaroenprasert W, Liang MC, Khoo DH, Cheah JS, Ho SC, Bernstein HS, Maciel RM, Brown RH Jr, Ptácek LJ (2010) Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 140:88–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cheng CJ, Lin SH, Lo YF, Yang SS, Hsu YJ, Cannon SC, Huang CL (2011) Identification and functional characterization of Kir2.6 mutations associated with non-familial hypokalemic periodic paralysis. J Biol Chem 286:27425–27435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jongjaroenprasert W, Phusantisampan T, Mahasirimongkol S, Mushiroda T, Hirankarn N, Snabboon T, Chanprasertyotin S, Tantiwong P, Soonthornpun S, Rattanapichart P, Mamanasiri S, Himathongkam T, Ongphiphadhanakul B, Takahashi A, Kamatani N, Kubo M, Nakamura Y (2012) A genome-wide association study identifies novel susceptibility genetic variation for thyrotoxic hypokalemic periodic paralysis. J Hum Genet 57:301–304

    Article  CAS  PubMed  Google Scholar 

  32. Struyk AF, Cannon SC (2008) Paradoxical depolarization of BA2+-treated muscle exposed to low extracellular K+: insights into resting potential abnormalities in hypokalemic paralysis. Muscle Nerve 37:326–337

    Article  CAS  PubMed  Google Scholar 

  33. Jurkat-Rott K, Weber MA, Fauler M, Guo XH, Holzherr BD, Paczulla A, Nordsborg N, Joechle W, Lehmann-Horn F (2009) K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci USA 106:4036–4041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lin SH (2005) Thyrotoxic periodic paralysis. Mayo Clin Proc 80:99–105

    Article  PubMed  Google Scholar 

  35. Allen AS (1943) Pa-Ping, or Kiating paralysis. Chin Med J 61:296–301

    Google Scholar 

  36. Cheng CJ, Kuo E, Huang CL (2013) Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis. Semin Nephrol 33:237–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lin SH, Huang CL (2012) Mechanism of thyrotoxic periodic paralysis. J Am Soc Nephrol 23:985–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Seebohm G, Strutz-Seebohm N, Ursu ON, Preisig-Müller R, Zuzarte M, Hill EV, Kienitz MC, Bendahhou S, Fauler M, Tapken D, Decher N, Collins A, Jurkat-Rott K, Steinmeyer K, Lehmann-Horn F, Daut J, Tavaré JM, Pott L, Bloch W, Lang F (2012) Altered stress stimulation of inward rectifier potassium channels in Andersen-Tawil syndrome. FASEB J 26:513–522

    Article  CAS  PubMed  Google Scholar 

  39. Mulatero P, Monticone S, Rainey WE, Veglio F, Williams TA (2013) Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat Rev Endocrinol 9:104–112

    Article  CAS  PubMed  Google Scholar 

  40. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Åkerström G, Wang W, Carling T, Lifton RP (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331:768–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, Penton D, Schack VR, Amar L, Fischer E, Walther A, Tauber P, Schwarzmayr T, Diener S, Graf E, Allolio B, Samson-Couterie B, Benecke A, Quinkler M, Fallo F, Plouin PF, Mantero F, Meitinger T, Mulatero P, Jeunemaitre X, Warth R, Vilsen B, Zennaro MC, Strom TM, Reincke M (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45:440–444

    Article  CAS  PubMed  Google Scholar 

  42. Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, Prasad ML, Hartung EA, Mauras N, Benson MR, Brady T, Shapiro JR, Loring E, Nelson-Williams C, Libutti SK, Mane S, Hellman P, Westin G, Akerström G, Björklund P, Carling T, Fahlke C, Hidalgo P, Lifton RP (2013) Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 45:1050–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A, Maniero C, Garg S, Bochukova EG, Zhao W, Shaikh LH, Brighton CA, Teo AE, Davenport AP, Dekkers T, Tops B, Küsters B, Ceral J, Yeo GS, Neogi SG, McFarlane I, Rosenfeld N, Marass F, Hadfield J, Margas W, Chaggar K, Solar M, Deinum J, Dolphin AC, Farooqi IS, Striessnig J, Nissen P, Brown MJ (2013) Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 45:1055–1060

    Article  CAS  PubMed  Google Scholar 

  44. Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F, Annaratone L, Castellano I, Beuschlein F, Reincke M, Lucatello B, Ronconi V, Fallo F, Bernini G, Maccario M, Giacchetti G, Veglio F, Warth R, Vilsen B, Mulatero P (2013) Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 63:188–195

    Article  PubMed  Google Scholar 

  45. Monticone S, Hattangady NG, Penton D, Isales C, Edwards MA, Williams TA, Sterner C, Warth R, Mulatero P, Rainey WE (2013) A novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III. J Clin Endocrinol Metab 98:E1861–E1865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nogueira EF, Gerry D, Mantero F, Mariniello B, Rainey WE (2010) The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas. Clin Endocrinol (Oxf) 73:22–29

    CAS  Google Scholar 

  47. Bhave G, Lonergan D, Chauder BA, Denton JS (2010) Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Futur Med Chem 2:757–774

    Article  CAS  Google Scholar 

  48. Garcia ML, Priest BT, Alonso-Galicia M, Zhou X, Felix JP, Thomas-Fowlkes B, Brochu RM, Bailey T, Swensen A, Liu J, Pai LY, Xiao J, Hernandez M, Hoagland K, Owens K, Tang H, Dejesus RK, Roy S, Kaczorowski GJ, Pasternak A (2013) Pharmacological inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther 348:153–164

    Article  PubMed  Google Scholar 

  49. Tricarico D, Barbieri M, Mele A, Carbonara G, Camerino DC (2004) Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J 18:760–761

    CAS  PubMed  Google Scholar 

  50. Murthy M, Azizan EA, Brown MJ, O’Shaughnessy KM (2012) Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. J Hypertens 30:1827–1833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tom Chou in Providence St. Vincent Medical Center, Portland, Oregon, USA, for editing this manuscript. This work was supported by grants from NSC and NHRI of Taiwan (NSC102-2314-B-016-001, NHRI-EX103-10323SC to CJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CJ., Sung, CC., Huang, CL. et al. Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis. Pediatr Nephrol 30, 373–383 (2015). https://doi.org/10.1007/s00467-014-2764-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2764-0

Keywords

Navigation