Skip to main content

Advertisement

Log in

Matrix metalloproteinases and epidermal wound repair

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell–cell and cell–matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahokas K, Skoog T, Suomela S, Jeskanen L, Impola U et al (2005) Matrilysin-2 (matrix metalloproteinase-26) is upregulated in keratinocytes during wound repair and early skin carcinogenesis. J Invest Dermatol 124:849–856

    Article  PubMed  CAS  Google Scholar 

  • Atkinson JJ, Toennies HM, Holmbeck K, Senior RM (2007) Membrane type 1 matrix metalloproteinase is necessary for distal airway epithelial repair and keratinocyte growth factor receptor expression after acute injury. Am J Physiol Lung Cell Mol Physiol 293:L600–L610

    Article  PubMed  CAS  Google Scholar 

  • Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    Article  PubMed  CAS  Google Scholar 

  • Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM (2000) Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol 157:525–535

    Article  PubMed  CAS  Google Scholar 

  • Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM et al (2011) Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med 365:1502–1508

    Article  PubMed  CAS  Google Scholar 

  • Bullard KM, Lund L, Mudgett JS, Mellin TN, Hunt TK et al (1999a) Impaired wound contraction in stromelysin-1-deficient mice. Ann Surg 230:260–265

    Article  PubMed  CAS  Google Scholar 

  • Bullard KM, Mudgett J, Scheuenstuhl H, Hunt TK, Banda MJ (1999b) Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res 84:31–34

    Article  PubMed  CAS  Google Scholar 

  • Bullen EC, Longaker MT, Updike DL, Benton R, Ladin D et al (1995) Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol 104:236–240

    Article  PubMed  CAS  Google Scholar 

  • Castaneda FE, Walia B, Vijay-Kumar M, Patel NR, Roser S et al (2005) Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP. Gastroenterology 129:1991–2008

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Parks WC (2009) Role of matrix metalloproteinases in epithelial migration. J Cell Biochem 108:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Abacherli LE, Nadler ST, Wang Y, Li Q, Parks WC (2009) MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS One 4:e6565

    Article  PubMed  CAS  Google Scholar 

  • Chin GA, Thigpin TG, Perrin KJ, Moldawer LL, Schultz GS (2003) Treatment of chronic ulcers in diabetic patients with a topical metalloproteinase inhibitor, doxycycline. Wounds 15:315–323

    Google Scholar 

  • Clark RAF (1995) Wound repair: overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound repair (second edition). Plenum, New York, pp 3–50

    Google Scholar 

  • Cook H, Davies KJ, Harding KG, Thomas DW (2000) Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J Invest Dermatol 115:225–233

    Article  PubMed  CAS  Google Scholar 

  • Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG et al (1998) Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161:6845–6852

    PubMed  CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  • Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360

    Article  PubMed  CAS  Google Scholar 

  • Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R et al (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263:209–223

    Article  PubMed  CAS  Google Scholar 

  • Dunsmore SE, Saarialho-Kere UK, Roby JD, Wilson CL, Matrisian LM et al (1998) Matrilysin expression and function in airway epithelium. J Clin Invest 102:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Edwards DR, Murphy G, Reynolds JJ, Whitham SE, Docherty AJ et al (1987) Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6:1899–1904

    PubMed  CAS  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T et al (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770

    Article  PubMed  CAS  Google Scholar 

  • Fini ME, Parks WC, Rinehart WB, Girard MT, Matsubara M et al (1996) Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury. Am J Pathol 149:1287–1302

    PubMed  CAS  Google Scholar 

  • Franzke CW, Tasanen K, Borradori L, Huotari V, Bruckner-Tuderman L (2004) Shedding of collagen XVII/BP180: structural motifs influence cleavage from cell surface. J Biol Chem 279:24521–24529

    Article  PubMed  CAS  Google Scholar 

  • Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  PubMed  CAS  Google Scholar 

  • Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  PubMed  CAS  Google Scholar 

  • Gill SE, Pape MC, Khokha R, Watson AJ, Leco KJ (2003) A null mutation for tissue inhibitor of metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Dev Biol 261:313–323

    Article  PubMed  CAS  Google Scholar 

  • Gilles C, Polette M, Coraux C, Tournier JM, Meneguzzi G et al (2001) Contribution of MT1-MMP and of human laminin-5 gamma2 chain degradation to mammary epithelial cell migration. J Cell Sci 114:2967–2976

    PubMed  CAS  Google Scholar 

  • Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Fernandez A, Inada M, Balbin M, Fueyo A, Pitiot AS et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591

    Article  PubMed  CAS  Google Scholar 

  • Haines P, Samuel GH, Cohen H, Trojanowska M, Bujor AM (2011) Caveolin-1 is a negative regulator of MMP-1 gene expression in human dermal fibroblasts via inhibition of Erk1/2/Ets1 signaling pathway. J Dermatol Sci 64:210–216

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 2000(24):127–152

    Article  Google Scholar 

  • Harsha A, Stojadinovic O, Brem H, Sehara-Fujisawa A, Wewer U et al (2008) ADAM12: a potential target for the treatment of chronic wounds. J Mol Med (Berl) 86:961–969

    Article  CAS  Google Scholar 

  • Hartenstein B, Dittrich BT, Stickens D, Heyer B, Vu TH et al (2006) Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J Invest Dermatol 126:486–496

    Article  PubMed  CAS  Google Scholar 

  • Hasty KA, Hibbs MS, Kang AH, Mainardi CL (1986) Secreted forms of human neutrophil collagenase. J Biol Chem 261:5645–5650

    PubMed  CAS  Google Scholar 

  • Hattori N, Mochizuki S, Kishi K, Nakajima T, Takaishi H et al (2009) MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol 175:533–546

    Article  PubMed  CAS  Google Scholar 

  • Heckmann M, Adelmann-Grill BC, Hein R, Krieg T (1993) Biphasic effects of interleukin-1 alpha on dermal fibroblasts: enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations. J Invest Dermatol 100:780–784

    Article  PubMed  CAS  Google Scholar 

  • Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkila P et al (2005) Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307:292–304

    Article  PubMed  CAS  Google Scholar 

  • Hieta N, Impola U, Lopez-Otin C, Saarialho-Kere U, Kahari VM (2003) Matrix metalloproteinase-19 expression in dermal wounds and by fibroblasts in culture. J Invest Dermatol 121:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama S, Nanba D (2005) ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta 1751:110–117

    Article  PubMed  CAS  Google Scholar 

  • Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92

    Article  PubMed  CAS  Google Scholar 

  • Igata T, Jinnin M, Makino T, Moriya C, Muchemwa FC et al (2010) Up-regulated type I collagen expression by the inhibition of Rac1 signaling pathway in human dermal fibroblasts. Biochem Biophys Res Commun 393:101–105

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322(Pt 3):809–814

    PubMed  CAS  Google Scholar 

  • Inoue M, Kratz G, Haegerstrand A, Stahle-Backdahl M (1995) Collagenase expression is rapidly induced in wound-edge keratinocytes after acute injury in human skin, persists during healing, and stops at re-epithelialization. J Invest Dermatol 104:479–483

    Article  PubMed  CAS  Google Scholar 

  • Johnsen M, Lund LR, Romer J, Almholt K, Dano K (1998) Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10:667–671

    Article  PubMed  CAS  Google Scholar 

  • Juncker-Jensen A, Lund LR (2011) Phenotypic overlap between MMP-13 and the plasminogen activation system during wound healing in mice. PLoS One 6:e16954

    Article  PubMed  CAS  Google Scholar 

  • Kajita M, Itoh Y, Chiba T, Mori H, Okada A et al (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kure T, Chang JH, Gabison EE, Itoh T et al (2001) Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett 508:187–190

    Article  PubMed  CAS  Google Scholar 

  • Kivisaari AK, Kallajoki M, Mirtti T, McGrath JA, Bauer JW et al (2008) Transformation-specific matrix metalloproteinases (MMP)-7 and MMP-13 are expressed by tumour cells in epidermolysis bullosa-associated squamous cell carcinomas. Br J Dermatol 158:778–785

    Article  PubMed  CAS  Google Scholar 

  • Kivisaari AK, Kallajoki M, Ala-aho R, McGrath JA, Bauer JW et al (2010) Matrix metalloproteinase-7 activates heparin-binding epidermal growth factor-like growth factor in cutaneous squamous cell carcinoma. Br J Dermatol 163:726–735

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Bischoff R (2011) Active metalloproteases of the A Disintegrin and Metalloprotease (ADAM) family: biological function and structure. J Proteome Res 10:17–33

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624

    Article  PubMed  CAS  Google Scholar 

  • Krampert M, Bloch W, Sasaki T, Bugnon P, Rulicke T et al (2004) Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell 15:5242–5254

    Article  PubMed  CAS  Google Scholar 

  • Krampert M, Kuenzle S, Thai SN, Lee N, Iruela-Arispe ML, Werner S (2005) ADAMTS1 proteinase is up-regulated in wounded skin and regulates migration of fibroblasts and endothelial cells. J Biol Chem 280:23844–23852

    Article  PubMed  CAS  Google Scholar 

  • Kure T, Chang JH, Kato T, Hernandez-Quintela E, Ye H et al (2003) Corneal neovascularization after excimer keratectomy wounds in matrilysin-deficient mice. Invest Ophthalmol Vis Sci 44:137–144

    Article  PubMed  Google Scholar 

  • Larjava H, Haapasalmi K, Salo T, Wiebe C, Uitto VJ (1996) Keratinocyte integrins in wound healing and chronic inflammation of the human periodontium. Oral Dis 2:77–86

    Article  PubMed  CAS  Google Scholar 

  • Lechapt-Zalcman E, Pruliere-Escabasse V, Advenier D, Galiacy S, Charriere-Bertrand C et al (2006) Transforming growth factor-beta1 increases airway wound repair via MMP-2 upregulation: a new pathway for epithelial wound repair? Am J Physiol Lung Cell Mol Physiol 290:L1277–L1282

    Article  PubMed  CAS  Google Scholar 

  • Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky I (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci U S A 93:7069–7074

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646

    Article  PubMed  CAS  Google Scholar 

  • Madlener M, Parks WC, Werner S (1998) Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 242:201–210

    Article  PubMed  CAS  Google Scholar 

  • Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F et al (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102:9182–9187

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Gary SC, Zerillo C, Pratta M, Solomon K et al (2000) Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J Biol Chem 275:22695–22703

    Article  PubMed  CAS  Google Scholar 

  • Mauch C, Zamek J, Abety AN, Grimberg G, Fox JW, Zigrino P (2010) Accelerated wound repair in ADAM-9 knockout animals. J invest Dermatol 130:2120–2130

    Article  PubMed  CAS  Google Scholar 

  • Mauviel A (1993) Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 53:288–295

    Article  PubMed  CAS  Google Scholar 

  • Mauviel A, Uitto J (1993) The extracellular-matrix in wound-healing — role of the cytokine network. Wounds 5:137–152

    Google Scholar 

  • Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA et al (2005) A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res 65:4728–4738

    Article  PubMed  CAS  Google Scholar 

  • McCawley LJ, O'Brien P, Hudson LG (1998) Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)- mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J Cell Physiol 176:255–265

    Article  PubMed  CAS  Google Scholar 

  • McGuire JK, Li Q, Parks WC (2003) Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162:1831–1843

    Article  PubMed  CAS  Google Scholar 

  • Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25

    Article  PubMed  Google Scholar 

  • Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195

    PubMed  CAS  Google Scholar 

  • Mohan R, Chintala SK, Jung JC, Villar WV, McCabe F et al (2002) Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 277:2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Moses MA, Marikovsky M, Harper JW, Vogt P, Eriksson E et al (1996) Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during wound healing. J Cell Biochem 60:379–386

    Article  PubMed  CAS  Google Scholar 

  • Mulholland B, Tuft SJ, Khaw PT (2005) Matrix metalloproteinase distribution during early corneal wound healing. Eye 19:584–588

    Article  PubMed  CAS  Google Scholar 

  • Murphy G, Cockett MI, Ward RV, Docherty AJ (1991) Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J 277(Pt 1):277–279

    PubMed  CAS  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  • Nwomeh BC, Liang HX, Cohen IK, Yager DR (1999) MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res 81:189–195

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Seo DW, Diaz T, Wei B, Ward Y et al (2004) Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 64:9062–9069

    Article  PubMed  CAS  Google Scholar 

  • Okada A, Tomasetto C, Lutz Y, Bellocq JP, Rio MC, Basset P (1997) Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A. J Cell Biol 137:67–77

    Article  PubMed  CAS  Google Scholar 

  • O'Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274:29568–29571

    Article  PubMed  Google Scholar 

  • O'Toole EA, Marinkovich MP, Peavey CL, Amieva MR, Furthmayr H et al (1997) Hypoxia increases human keratinocyte motility on connective tissue. J Clin Invest 100:2881–2891

    Article  PubMed  Google Scholar 

  • O'Toole EA, van Koningsveld R, Chen M, Woodley DT (2008) Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase C pathway. J Cell Physiol 214:47–55

    Article  PubMed  CAS  Google Scholar 

  • Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  PubMed  CAS  Google Scholar 

  • Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  PubMed  CAS  Google Scholar 

  • Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 137:1445–1457

    Article  PubMed  CAS  Google Scholar 

  • Pilcher BK, Dumin J, Schwartz MJ, Mast BA, Schultz GS et al (1999) Keratinocyte collagenase-1 expression requires an epidermal growth factor receptor autocrine mechanism. J Biol Chem 274:10372–10381

    Article  PubMed  CAS  Google Scholar 

  • Porras-Reyes BH, Blair HC, Jeffrey JJ, Mustoe TA (1991) Collagenase production at the border of granulation tissue in a healing wound: macrophage and mesenchymal collagenase production in vivo. Connect Tissue Res 27:63–71

    Article  PubMed  CAS  Google Scholar 

  • Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    Article  PubMed  CAS  Google Scholar 

  • Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L et al (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

    Article  PubMed  CAS  Google Scholar 

  • Rechardt O, Elomaa O, Vaalamo M, Paakkonen K, Jahkola T et al (2000) Stromelysin-2 is upregulated during normal wound repair and is induced by cytokines. J Invest Dermatol 115:778–787

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 279:51323–51330

    Article  PubMed  CAS  Google Scholar 

  • Ryan MC, Tizard R, VanDevanter DR, Carter WG (1994) Cloning of the LamA3 gene encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair. J Biol Chem 269:22779–22787

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere UK, Kovacs SO, Pentland AP, Olerud JE, Welgus HG, Parks WC (1993) Cell–matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J Clin Invest 92:2858–2866

    Article  PubMed  CAS  Google Scholar 

  • Saarialho-Kere UK, Pentland AP, Birkedal-Hansen H, Parks WC, Welgus HG (1994) Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J Clin Invest 94:79–88

    Article  PubMed  CAS  Google Scholar 

  • Saarialho-Kere UK, Vaalamo M, Puolakkainen P, Airola K, Parks WC, Karjalainen-Lindsberg ML (1996) Enhanced expression of matrilysin, collagenase, and stromelysin-1 in gastrointestinal ulcers. Am J Pathol 148:519–526

    PubMed  CAS  Google Scholar 

  • Saarialho-Kere U, Kerkela E, Jahkola T, Suomela S, Keski-Oja J, Lohi J (2002) Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol 119:14–21

    Article  PubMed  CAS  Google Scholar 

  • Sadowski T, Dietrich S, Koschinsky F, Sedlacek R (2003) Matrix metalloproteinase 19 regulates insulin-like growth factor-mediated proliferation, migration, and adhesion in human keratinocytes through proteolysis of insulin-like growth factor binding protein-3. Mol Biol Cell 14:4569–4580

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Blobel CP (2007) Ectodomain shedding of the EGF-receptor ligand epigen is mediated by ADAM17. FEBS letters 581:41–44

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S et al (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779

    Article  PubMed  CAS  Google Scholar 

  • Salo T, Makela M, Kylmaniemi M, Autio-Harmainen H, Larjava H (1994) Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest 70:176–182

    PubMed  CAS  Google Scholar 

  • Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C et al (2001) Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 276:13372–13378

    Article  PubMed  CAS  Google Scholar 

  • Sawicki G, Marcoux Y, Sarkhosh K, Tredget EE, Ghahary A (2005) Interaction of keratinocytes and fibroblasts modulates the expression of matrix metalloproteinases-2 and -9 and their inhibitors. Mol Cell Biochem 269:209–216

    Article  PubMed  CAS  Google Scholar 

  • Scholz F, Schulte A, Adamski F, Hundhausen C, Mittag J et al (2007) Constitutive expression and regulated release of the transmembrane chemokine CXCL16 in human and murine skin. J Invest Dermatol 127:1444–1455

    Article  PubMed  CAS  Google Scholar 

  • Seiki M (2002) The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 14:624–632

    Article  PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Birkedal-Hansen H (1989) Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J Biol Chem 264:393–401

    PubMed  CAS  Google Scholar 

  • Steffensen B, Hakkinen L, Larjava H (2001) Proteolytic events of wound-healing–coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 12:373–398

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  • Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX et al (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823–840

    Article  PubMed  CAS  Google Scholar 

  • Strachan L, Murison JG, Prestidge RL, Sleeman MA, Watson JD, Kumble KD (2001) Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. J Biol Chem 276:18265–18271

    Article  PubMed  CAS  Google Scholar 

  • Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338

    Article  PubMed  CAS  Google Scholar 

  • Sudbeck BD, Pilcher BK, Welgus HG, Parks WC (1997) Induction and repression of collagenase-1 by keratinocytes is controlled by distinct components of different extracellular matrix compartments. J Biol Chem 272:22103–22110

    Article  PubMed  CAS  Google Scholar 

  • Surendran K, Simon TC, Liapis H, McGuire JK (2004) Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int 65:2212–2222

    Article  PubMed  CAS  Google Scholar 

  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M et al (1998) Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A 95:13221–13226

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Hisanaga M, Nagao M, Ikeda N, Fujii H et al (2004) The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin Cancer Res 10:5572–5579

    Article  PubMed  CAS  Google Scholar 

  • Tang BL (2001) ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 33:33–44

    Article  PubMed  CAS  Google Scholar 

  • Terasaki K, Kanzaki T, Aoki T, Iwata K, Saiki I (2003) Effects of recombinant human tissue inhibitor of metalloproteinases-2 (rh-TIMP-2) on migration of epidermal keratinocytes in vitro and wound healing in vivo. J Dermatol 30:165–172

    PubMed  CAS  Google Scholar 

  • Toriseva M, Kahari VM (2009) Proteinases in cutaneous wound healing. Cell Mol Life Sci 66:203–224

    Article  PubMed  CAS  Google Scholar 

  • Tu G, Xu W, Huang H, Li S (2008) Progress in the development of matrix metalloproteinase inhibitors. Curr Med Chem 15:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Unemori EN, Hibbs MS, Amento EP (1991) Constitutive expression of a 92-kD gelatinase (type V collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines. J Clin Invest 88:1656–1662

    Article  PubMed  CAS  Google Scholar 

  • Vaalamo M, Weckroth M, Puolakkainen P, Kere J, Saarinen P et al (1996) Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally healing human cutaneous wounds. Br J Dermatol 135:52–59

    Article  PubMed  CAS  Google Scholar 

  • Vaalamo M, Leivo T, Saarialho-Kere U (1999) Differential expression of tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4) in normal and aberrant wound healing. Hum Pathol 30:795–802

    Article  PubMed  CAS  Google Scholar 

  • Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82:1375–1381

    Article  PubMed  CAS  Google Scholar 

  • Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87:5578–5582

    Article  PubMed  Google Scholar 

  • Vartak DG, Gemeinhart RA (2007) Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target 15:1–20

    Article  PubMed  CAS  Google Scholar 

  • Velasco J, Li J, DiPietro L, Stepp MA, Sandy JD, Plaas A (2011) Adamts5 deletion blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth factor beta1 (TGFbeta1) signaling. J Biol Chem 286:26016–26027

    Article  PubMed  CAS  Google Scholar 

  • Veves A, Sheehan P, Pham HT (2002) A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 137:822–827

    Article  PubMed  CAS  Google Scholar 

  • Vin F, Teot L, Meaume S (2002) The healing properties of Promogran in venous leg ulcers. J Wound Care 11:335–341

    PubMed  CAS  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  • Wall SJ, Bevan D, Thomas DW, Harding KG, Edwards DR, Murphy G (2002) Differential expression of matrix metalloproteinases during impaired wound healing of the diabetes mouse. J Invest Dermatol 119:91–98

    Article  PubMed  CAS  Google Scholar 

  • Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    Article  PubMed  CAS  Google Scholar 

  • Widgerow AD (2011) Chronic wound fluid—thinking outside the box. Wound Repair Regen 19:287–291

    Article  PubMed  Google Scholar 

  • Wild-Bode C, Fellerer K, Kugler J, Haass C, Capell A (2006) A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration. J Biol Chem 281:23824–23829

    Article  PubMed  CAS  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS et al (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg TG, Straight PD, Gerena RL, Huovila A-PJ, Primakoff P et al (1995) ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev Biol 169:378–383

    Article  PubMed  CAS  Google Scholar 

  • Wysocki AB, Staiano-Coico L, Grinnell F (1993) Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 101:64–68

    Article  PubMed  CAS  Google Scholar 

  • Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK (1996) Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol 107:743–748

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211:19–26

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Yu FS (2009) ERK1/2 mediate wounding- and G-protein-coupled receptor ligands-induced EGFR activation via regulating ADAM17 and HB-EGF shedding. Invest Ophthalmol Vis Sci 50:132–139

    Article  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  Google Scholar 

  • Zhang X, Nothnick WB (2005) The role and regulation of the uterine matrix metalloproteinase system in menstruating and non-menstruating species. Front Biosci 10:353–366

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY et al (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97:4052–4057

    Article  PubMed  CAS  Google Scholar 

  • Zweers MC, Davidson JM, Pozzi A, Hallinger R, Janz K et al (2007) Integrin alpha2beta1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J Invest Dermatol 127:467–478

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edel A. O’Toole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, V.L., Caley, M. & O’Toole, E.A. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res 351, 255–268 (2013). https://doi.org/10.1007/s00441-012-1410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1410-z

Keywords

Navigation