Skip to main content

Advertisement

Log in

Vascular targeted therapies in oncology

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neovascularization is intimately involved in tumor survival, progression, and spread, factors known to contribute significantly to treatment failures. Thus, strategies targeting the tumor blood vessel support network may offer not only unique therapeutic opportunities in their own right, but also novel means of enhancing the efficacies of conventional anticancer treatments. This article reviews one such therapeutic approach directed at the tumor blood vessel support network. Vascular disrupting therapies seek the destruction of the established neovasculature of actively growing tumors. The goal of these therapies is to cause a rapid and catastrophic shutdown in the vascular function of the tumor in order to arrest the blood flow and produce tumor cell death as a result of oxygen and nutrient deprivation and the build up of waste products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk D, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    Article  PubMed  CAS  Google Scholar 

  • Baguley BC, Ching LM (2002) DMXAA: an antivascular agent with multiple host responses. Int J Radiat Oncol Biol Phys 54:1503–1511

    PubMed  CAS  Google Scholar 

  • Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE, Ryan AJ (2002) Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin Cancer Res 8:1974–1983

    PubMed  CAS  Google Scholar 

  • Bloemendal HJ, Logtenberg T, Voest EE (1999) New strategies in anti-vascular cancer therapy. Eur J Clin Invest 29:802–809

    Article  PubMed  CAS  Google Scholar 

  • Chaplin DJ, Dougherty GJ (1999) Tumour vasculature as a target for cancer therapy. Br J Cancer 80:57–64

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Horsman MR, Siemann DW (2006) Current development status of small-molecule vascular disrupting agents. Curr Opin Invest Drugs 7:522–528

    CAS  Google Scholar 

  • Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor MA, Nolan J, Stratford MR, Chaplin DJ, Hill SA (2002) ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 62:7247–7253

    PubMed  CAS  Google Scholar 

  • Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, Rafie N, Overmoyer B, Makkar V, Stambler B, Taylor A, Waas J, Lewin JS, McCrae KR, Remick SC (2002) A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 62:3408–3416

    PubMed  CAS  Google Scholar 

  • Ellis LM, Takahashi Y, Liu W, Shaheen RM (2000) Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist 5 (Suppl 1):11–15

    Article  PubMed  CAS  Google Scholar 

  • Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, Reinmuth N (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 28:94–104

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1986) How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res 46:467–473

    PubMed  CAS  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    PubMed  CAS  Google Scholar 

  • Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM (2001a) Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res 21:93–102

    PubMed  CAS  Google Scholar 

  • Galbraith SM, Lodge MA, Taylor NJ, Maxwell R, Tozer GM, Prise V, Wilson I, Sena L, Robbins A, Padhani A, Padhani G (2001b) Combretastatin A4 phosphate (CA4P) reduces tumor blood flow in animals and man, demonstrated by MRI. Proc Am Soc Clin Oncol 20:278

    Google Scholar 

  • Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC (1999) In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer 81:1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR, Murata R, Overgaard J (2002) Combination studies with combretastatin and radiation: effects in early and late responding normal tissues. Radiother Oncol 64:S50

    Google Scholar 

  • Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66:11520–11539

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  • Kestell P, Zhao L, Jameson MB, Stratford MR, Folkes LK, Baguley BC (2001) Measurement of plasma 5-hydroxyindoleacetic acid as a possible clinical surrogate marker for the action of antivascular agents. Clin Chim Acta 314:159–166

    Article  PubMed  CAS  Google Scholar 

  • Konerding MA, Miodonski AJ, Lametschwandtner A (1995) Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 9:1233–1244

    PubMed  CAS  Google Scholar 

  • Konerding MA, Ackern C van, Fait E, Steinberg F, Streffer C (2002) Morphological aspects of tumor angiogenesis and microcirculation. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors. Springer, Berlin Heidelberg New York, pp 5–17

    Google Scholar 

  • Landuyt W, Ahmed B, Nuyts S, Theys J, Op de Beeck M, Rijnders A, Anné J, Oosterom A van, Bogaert W van den, Lambin P (2001) In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int J Radiat Oncol Biol Phys 49:443–450

    Article  PubMed  CAS  Google Scholar 

  • Li L, Rojiani AM, Siemann DW (2002) Preclinical evaluations of therapies combining the vascular targeting agent combretastatin A-4 disodium phosphate and conventional anticancer therapies in the treatment of Kaposi’s sarcoma. Acta Oncol 41:91–97

    Article  PubMed  CAS  Google Scholar 

  • McKeage MJ, Fong P, Jeffery M, Baguley BC, Kestell P, Ravic M, Jameson MB (2006) 5,6- Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776–1784

    Article  PubMed  CAS  Google Scholar 

  • Murata R, Siemann DW, Overgaard J, Horsman MR (2001a) Improved tumor response by combining radiation and the vascular damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat Res 156:503–509

    Article  PubMed  CAS  Google Scholar 

  • Murata R, Siemann DW, Overgaard J, Horsman MR (2001b) Interaction between combretastatin A4 disodium phosphate and radiation in murine tumours. Radiother Oncol 60:155–161

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  • Salmon HW, Siemann DW (2006) Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity. Clin Cancer Res 12:4090–4094

    Article  PubMed  CAS  Google Scholar 

  • Shaked Y, Bertolini F, Emmenegger U, Lee CR, Kerbel RS (2006) On the origin and nature of elevated levels of circulating endothelial cells after treatment with a vascular disrupting agent. J Clin Oncol 24:4040–4041

    Article  PubMed  Google Scholar 

  • Siemann DW (2002) Vascular targeting agents. Horiz Cancer Ther 3:4–15

    Google Scholar 

  • Siemann DW (2004) Therapeutic strategies that selectively target and disrupt established tumor vasculature. Hematol Oncol Clin North Am 18:1023–1037

    Article  PubMed  Google Scholar 

  • Siemann DW, Chaplin DJ (2007) An update on the clinical development of drugs to disable tumor vasculature. Expert Opin Drug Discov 2:1357–1367

    Article  CAS  Google Scholar 

  • Siemann DW, Horsman MR (2008) Small molecule vascular disrupting agents in cancer therapy. In: Ellis LM, Teicher B (eds) Antiangiogenesis agents. Humana, Towaha, pp 297–310

    Chapter  Google Scholar 

  • Siemann DW, Rojiani AM (2002) Enhancement of radiation therapy by the novel vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 53:164–171

    PubMed  CAS  Google Scholar 

  • Siemann DW, Shi W (2003) Targeting the tumor blood vessel network to enhance the efficacy of radiation therapy. Semin Radiat Oncol 13:53–61

    Article  PubMed  Google Scholar 

  • Siemann DW, Shi W (2004) Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys 60:1233–1240

    PubMed  CAS  Google Scholar 

  • Siemann DW, Mercer E, Lepler SE, Rojiani AM (2002) Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int J Cancer 99:1–6

    Article  PubMed  CAS  Google Scholar 

  • Siemann DW, Chaplin DJ, Horsman MR (2004) Vascular-targeting therapies for treatment of malignant disease. Cancer 100:2491–2499

    Article  PubMed  CAS  Google Scholar 

  • Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR, Marme D, LoRusso PM (2005) Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11:416–420

    PubMed  CAS  Google Scholar 

  • Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF (1970) Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res 30:2470–2477

    PubMed  CAS  Google Scholar 

  • Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    Article  PubMed  Google Scholar 

  • Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5:423–435

    Article  PubMed  CAS  Google Scholar 

  • Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S (2005) Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 115:2992–3006

    Article  PubMed  CAS  Google Scholar 

  • Wilson WR, Li AE, Cowan DS, Siim BG (1998) Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 42:905–908

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar W. Siemann.

Additional information

The authors’ work is supported by the National Cancer Institute (Public Health Service grants CA084408 and CA089655) and the Danish Cancer Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemann, D.W., Horsman, M.R. Vascular targeted therapies in oncology. Cell Tissue Res 335, 241–248 (2009). https://doi.org/10.1007/s00441-008-0646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0646-0

Keywords

Navigation