Skip to main content

Advertisement

Log in

A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Aims

With three consecutive tetratricopeptide repeat (TPR) motifs at its C-terminus essential for neuronal migration, and a p23 domain at its N-terminus, DYX1C1 was the first gene proposed to have a role in developmental dyslexia. In this study, we attempted to identify the potential interaction of DYX1C1 and heat shock protein, and the role of DYX1C1 in breast cancer.

Main methods

GST pull-down, a yeast two-hybrid system, RT-PCR, site-directed mutagenesis approach.

Key findings

Our study initially confirmed DYX1C1, a dyslexia related protein, could interact with Hsp70 and Hsp90 via GST pull-down and a yeast two-hybrid system. And we verified that EEVD, the C-terminal residues of DYX1C1, is responsible for the identified association. Further, DYX1C1 mRNA was significantly overexpressed in malignant breast tumor, linking with the up-regulated expression of Hsp70 and Hsp90.

Significance

These results suggest that DYX1C1 is a novel Hsp70 and Hsp90-interacting co-chaperone protein and its expression is associated with malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamson ED, Mercola D (2002) Egr1 transcription factor: multiple roles in prostate tumor cell growth and survival. Tumour Biol 23(2):93–102

    Article  PubMed  CAS  Google Scholar 

  • Beere HM (2004) “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Green DR (2001) Stress management—heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11:6–10

    Article  PubMed  CAS  Google Scholar 

  • Begley LA, MacDonald JW, Day ML, Macoska JA (2007) CXCL12 activates a robust transcriptional response in human prostate epithelial cells. J Biol Chem 282:26767–26774

    Article  PubMed  CAS  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21:932–939

    Article  PubMed  CAS  Google Scholar 

  • Cabioglu N, Summy J, Miller C et al (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65:6493–6497

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  PubMed  CAS  Google Scholar 

  • Cao Q, Chen J, Zhu L et al (2006) A testis-specific and testis developmentally regulated tumor protein D52 (TPD52)-like protein TPD52L3/hD55 interacts with TPD52 family proteins. Biochem Biophys Res Commun 344:798–806

    Article  PubMed  CAS  Google Scholar 

  • Carrigan PE, Sikkink LA, Smith DF, Ramirez-Alvarado M (2006) Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure. Protein Sci 15:522–532

    Article  PubMed  CAS  Google Scholar 

  • Chaix Y, Albaret JM, Brassard C et al (2007) Motor impairment in dyslexia: the influence of attention disorders. Eur J Paediatr Neurol 11:368–374

    Article  PubMed  Google Scholar 

  • D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662

    Article  PubMed  Google Scholar 

  • Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’? A functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

    Article  PubMed  CAS  Google Scholar 

  • Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  PubMed  CAS  Google Scholar 

  • Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235

    Article  PubMed  CAS  Google Scholar 

  • Freeman BC, Felts SJ, Toft DO, Yamamoto KR (2000) The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev 14:422–434

    PubMed  CAS  Google Scholar 

  • Frydman J, Hohfeld J (1997) Chaperones get in touch: the Hip–Hop connection. Trends Biochem Sci 22:87–92

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Jameel A, Skilton RA, Campbell TA, Chander SK, Coombes RC, Luqmani YA (1992) Clinical and biological significance of HSP89 alpha in human breast cancer. Int J Cancer 50:409–415

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Toft DO (1994) A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem 269:24989–24993

    PubMed  CAS  Google Scholar 

  • Johnson JL, Beito TG, Krco CJ, Toft DO (1994) Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol 14(3):1956–1963

    PubMed  CAS  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Nat Cancer Inst 92:1564–1572

    Article  PubMed  CAS  Google Scholar 

  • Kaur J, Ralhan R (1995) Differential expression of 70-kDa heat shock-protein in human oral tumorigenesis. Int J Cancer 63:774–779

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Huh JW, Kim DS et al (2009) Molecular characterization of the DYX1C1 gene and its application as a cancer biomarker. J Cancer Res Clin Oncol 135(2):265–270

    Article  PubMed  CAS  Google Scholar 

  • Krebs J, Saremaslani P, Caduff R (2002) ALG-2: a Ca2+-binding modulator protein involved in cell proliferation and in cell death. Biochim Biophys Acta 1600:68–73

    PubMed  CAS  Google Scholar 

  • Lane DP, Midgley C, Hupp T (1993) Tumour suppressor genes and molecular chaperones. Philos Trans R Soc B 339:369–372 discussion 72–73

    Article  CAS  Google Scholar 

  • Li W, Jin K, Nagayama T et al (2000) Increased expression of apoptosis-linked gene 2 (ALG2) in the rat brain after temporary focal cerebral ischemia. Neuroscience 96:161–168

    Article  PubMed  CAS  Google Scholar 

  • Marino C, Giorda R, Luisa Lorusso M et al (2005) A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. Eur J Hum Genet 13:491–499

    Article  PubMed  CAS  Google Scholar 

  • Miyata Y, Chambraud B, Radanyi C, et al. (1997) Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: regulation of HSP90-binding activity of FKBP52. Proceedings of the National Academy of Sciences 94, 14500-5

    Google Scholar 

  • Moczko M, Bomer U, Kubrich M, Zufall N, Honlinger A, Pfanner N (1997) The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol Cell Biol 17:6574–6584

    PubMed  CAS  Google Scholar 

  • Mollerup J, Berchtold MW (2005) The co-chaperone p23 is degraded by caspases and the proteasome during apoptosis. FEBS Lett 579:4187–4192

    Article  PubMed  CAS  Google Scholar 

  • Neckers L, Neckers K (2002) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opin Emerg Drugs 7:277–288

    Article  PubMed  CAS  Google Scholar 

  • Neckers L, Schulte TW, Mimnaugh E (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 17:361–373

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304:505–512

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Ramus F (2004) Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci 27:720–726

    Article  PubMed  CAS  Google Scholar 

  • Santarosa M, Favaro D, Quaia M, Galligioni E (1997) Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 33:873–877

    Article  PubMed  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  PubMed  CAS  Google Scholar 

  • Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–257

    Article  PubMed  CAS  Google Scholar 

  • Steensgaard P, Garre M, Muradore I et al (2004) Sgt1 is required for human kinetochore assembly. EMBO Rep 5:626–631

    Article  PubMed  CAS  Google Scholar 

  • Stuart JK, Myszka DG, Joss L et al (1998) Characterization of interactions between the anti-apoptotic protein BAG-1 and Hsc70 molecular chaperones. J Biol Chem 273:22506–22514

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WP, Owen BA, Toft DO (2002) The influence of ATP and p23 on the conformation of hsp90. J Biol Chem 277:45942–45948

    Article  PubMed  CAS  Google Scholar 

  • Taipale M, Kaminen N, Nopola-Hemmi J et al (2003) A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences 100, 11553-8

    Google Scholar 

  • Takayama S, Sato T, Krajewski S et al (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  PubMed  CAS  Google Scholar 

  • Threlkeld SW, McClure MM, Bai J et al (2007) Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. Brain Res Bull 71:508–514

    Article  PubMed  CAS  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821–831

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Paramasivam M, Thomas A et al (2006) DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience 143:515–522

    Article  PubMed  CAS  Google Scholar 

  • Wong HR, Wispe JR (1997) The stress response and the lung. Am J Physiol 273:L1–L9

    PubMed  CAS  Google Scholar 

  • Yufu Y, Nishimura J, Nawata H (1992) High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res 16:597–605

    Article  PubMed  CAS  Google Scholar 

  • Zeke T, Morrice N, Vazquez-Martin C, Cohen PT (2005) Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole. Biochem J 385:45–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by China national 973 funds (No. G1999055901 and No. 2009CB941701), Program for Changjiang Scholars and Innovative Research Team in University and construction of medical key discipline and talent fostering strategy. Besides, we thank generous technical assistance from Professor Sha Jiahao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Li.

Additional information

Yuxin Chen, Muzi Zhao, Saiqun Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhao, M., Wang, S. et al. A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer. J Cancer Res Clin Oncol 135, 1265–1276 (2009). https://doi.org/10.1007/s00432-009-0568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0568-6

Keywords

Navigation