Skip to main content
Log in

Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Gene divergence has given rise to the galectin family of mammalian lectins. Since selective binding to distinct β-galactosides underlies the known bioactivities of galectins, they could find application in cyto- and histochemistry. The pertinent question on the characteristics of their individual reactivity profiles therefore needs to be answered. Toward this end, comparative studies of a panel of galectins in defined systems are required. We here characterise the staining profiles of seven human lectins as well as five natural derivatives originating from proteolytic truncation and serine phosphorylation and one engineered variant. As test system, bovine germinal vesicle oocytes with their glycoprotein envelope (zona pellucida), which presents bi- to tetraantennary complex-type N-glycans with N-acetyllactosamine repeats and core fucosylation, were processed. Technically, confocal laser scanning microscopy was used, first with plant lectins to map the sialylation status. Hereby, α2,3/6-sialylation was detected in the superficial filamentous meshwork of the zona pellucida, while sialic acid-free glycan chains were found to characterise the main inner part of the compact layer of the zona pellucida. Galectin staining was specific and non-uniform. Significant differences in reactivity were detected for the superficial filamentous meshwork and the compact layer of the zona pellucida between galectins-1 to -4 versus galectins-8 and -9. The typical staining profiles intimate a spatially organised display of N-glycans in the different layers of the zona pellucida, underscoring the potential of galectins as cyto- and histochemical tools. Our results encourage further comparative analysis and research to trace the underlying structural and/or topological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad N, Gabius HJ, Kaltner H, André S, Kuwabara I, Liu FT, Oscarson S, Norberg T, Brewer CF (2002) Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3 and -7: evidence for differential binding specificities. Can J Chem 80:1096–1104

    Article  CAS  Google Scholar 

  • Ahmad N, Gabius HJ, André S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279:10841–10847

    Article  PubMed  CAS  Google Scholar 

  • Amari S, Yonezawa N, Mitsui S, Katsumata T, Hamano S, Kuwayama M, Hashimoto Y, Suzuki A, Takeda Y, Nakano M (2001) Essential role of the nonreducing terminal α-mannosyl residues of the N-linked carbohydrate chain of bovine zona pellucida glycoproteins in sperm-egg binding. Mol Reprod Dev 59:221–226

    Article  PubMed  CAS  Google Scholar 

  • André S, Kaltner H, Lensch M, Russwurm R, Siebert HC, Fallsehr C, Tajkhorshid E, Heck AJ, von Knebel Doeberitz M, Gabius HJ, Kopitz J (2005) Determination of structural and functional overlap/divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1 in silico and in vitro on human neuroblastoma cells. Int J Cancer 114:46–57

    Article  PubMed  Google Scholar 

  • André S, Pei Z, Siebert HC, Ramström O, Gabius HJ (2006) Glycosyldisulfides from dynamic combinatorial libraries as O-glycoside mimetics for plant and endogenous lectins: their reactivities in solid-phase and cell assays and conformational analysis by molecular dynamics simulations. Bioorg Med Chem 14:6314–6326

    Article  PubMed  Google Scholar 

  • André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel Doeberitz M, Gress TM, Nishimura SI, Rosewicz S, Gabius HJ (2007) Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 274:3233–3256

    Article  PubMed  Google Scholar 

  • André S, Sansone F, Kaltner H, Casnati A, Kopitz J, Gabius HJ, Ungaro R (2008) Calix[n]arene-based glycoclusters: bioactivity of thiourea-linked galactose/lactose moieties as inhibitors of binding of medically relevant lectins to a glycoprotein and cell-surface glycoconjugates and selectivity among human adhesion/growth-regulatory galectins. ChemBioChem 9:1649–1661

    Article  PubMed  Google Scholar 

  • André S, Kožár T, Kojima S, Unverzagt C, Gabius HJ (2009) From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans. Biol Chem 390:557–565

    Article  PubMed  Google Scholar 

  • Buddecke E (2009) Proteoglycans. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 199–216

    Google Scholar 

  • Chokhawala HA, Huang S, Lau K, Yu H, Cheng J, Thon V, Hurtado-Ziola N, Guerrero JA, Varki A, Chen X (2008) Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem Biol 3:567–576

    Article  PubMed  CAS  Google Scholar 

  • Cooper DNW (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    PubMed  CAS  Google Scholar 

  • Dam TK, Gabius HJ, André S, Kaltner H, Lensch M, Brewer CF (2005) Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 44:12564–12571

    Article  PubMed  CAS  Google Scholar 

  • Diéz-Revuelta N, Velasco S, André S, Kaltner H, Kübler D, Gabius HJ, Abad-Rodríguez J (2010) Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. J Cell Sci 123:671–681

    Article  PubMed  Google Scholar 

  • Easton RL, Patankar MS, Lattanzio FA, Leaven TH, Morris HR, Clark GF, Dell A (2000) Structural analysis of murine zona pellucida glycans. J Biol Chem 275:7731–7742

    Article  PubMed  CAS  Google Scholar 

  • Gabius HJ (2006) Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 26:43–79

    PubMed  CAS  Google Scholar 

  • Gabius HJ (ed) (2009) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim

    Google Scholar 

  • Gabius HJ (2011) Glycobiomarkers by glycoproteomics and glycan profiling (glycomics): emergence of functionality. Biochem Soc Trans 39:399–405

    Article  PubMed  CAS  Google Scholar 

  • Gabius HJ, Engelhardt R, Cramer F, Bätge R, Nagel GA (1985) Pattern of endogenous lectins in a human epithelial tumor. Cancer Res 45:253–257

    PubMed  CAS  Google Scholar 

  • Gabius HJ, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    Article  PubMed  CAS  Google Scholar 

  • Gabius HJ, Walzel H, Joshi SS, Kruip J, Kojima S, Gerke V, Kratzin H, Gabius S (1992) The immunomodulatory β-galactoside-specific lectin from mistletoe: partial sequence analysis, cell and tissue binding, and impact on intracellular biosignalling of monocytic leukemia cells. Anticancer Res 12:669–675

    PubMed  CAS  Google Scholar 

  • Galanina OE, Kaltner H, Khraltsova LS, Bovin NV, Gabius HJ (1997) Further refinement of the description of the ligand-binding characteristics for the galactoside-binding mistletoe lectin, a plant agglutinin with immunomodulatory potency. J Mol Recognit 10:139–147

    Article  PubMed  CAS  Google Scholar 

  • Göhler A, André S, Kaltner H, Sauer M, Gabius HJ, Doose S (2010) Hydrodynamic properties of human adhesion/growth-regulatory galectins studied by fluorescence correlation spectroscopy. Biophys J 98:3044–3053

    Article  PubMed  Google Scholar 

  • Habermann FA, Sinowatz F (2009) Glycobiology and early embryonic development. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 403–417

    Google Scholar 

  • Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Müller WEG, Yagi F, Kasai K-i (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    PubMed  CAS  Google Scholar 

  • Ideo H, Seko A, Ishizuka I, Yamashita K (2003) The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology 13:713–723

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Yonezawa N, Naoi K, Katsumata T, Hamano S, Nakano M (2002) Localization of N-linked carbohydrate chains in glycoprotein ZPA of the bovine egg zona pellucida. Eur J Biochem 269:4257–4266

    Article  PubMed  CAS  Google Scholar 

  • Joziasse DH, Schiphorst WECM, van den Eijnden DH, van Kuik JA, van Halbeek H, Vliegenthart JFG (1987) Branch specificity of bovine colostrum CMP-sialic acid: Galβ1 → 4GlcNAc-R α2 → 6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. J Biol Chem 262:2025–2033

    PubMed  CAS  Google Scholar 

  • Kaltner H, Solís D, Kopitz J, Lensch M, Lohr M, Manning JC, Mürnseer M, Schnölzer M, André S, Sáiz JL, Gabius HJ (2008) Prototype chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals. Biochem J 409:591–599

    Article  PubMed  CAS  Google Scholar 

  • Kaltner H, Kübler D, López-Merino L, Lohr M, Maninng JC, Lensch M, Seidler J, Lehmann WD, André S, Solís D, Gabius HJ (2011) Toward comprehensive analysis of the galectin network in chicken: unique diversity of galectin-3 and comparison of its localization profile in organs of adult animals to the other four members of this lectin family. Anat Rec 294:427–444

    Article  CAS  Google Scholar 

  • Katsumata T, Noguchi S, Yonezawa N, Tanokura M, Nakano M (1996) Structural characterization of the N-linked carbohydrate chains of the zona pellucida glycoproteins from bovine ovarian and fertilized eggs. Eur J Biochem 240:448–453

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick DC, Green C (1992) Lectins as blood typing reagents. Adv Lectin Res 5:51–94

    CAS  Google Scholar 

  • Klisch K, Jeanrond E, Pang PC, Pich A, Schuler G, Dantzer V, Kowalewski MP, Dell A (2008) A tetraantennary glycan with bisecting N-acetylglucosamine and the Sda antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins. Glycobiology 18:42–52

    Article  PubMed  CAS  Google Scholar 

  • Knibbs RN, Goldstein IJ, Ratcliffe RM, Shibuya N (1991) Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J Biol Chem 266:83–88

    PubMed  CAS  Google Scholar 

  • Kopitz J (2009) Glycolipids. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 177–198

    Google Scholar 

  • Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923

    Article  PubMed  CAS  Google Scholar 

  • Kopitz J, Bergmann M, Gabius HJ (2010) How adhesion/growth-regulatory galectins-1 and -3 attain cell specificity: case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane. IUBMB Life 62:624–628

    Article  PubMed  CAS  Google Scholar 

  • Krzeminski M, Singh T, André S, Lensch M, Wu AM, Bonvin AMJJ, Gabius HJ (2011) Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochim Biophys Acta 1810:150–161

    PubMed  CAS  Google Scholar 

  • Kübler D, Hung CW, Dam TK, Kopitz J, André S, Kaltner H, Lohr M, Manning JC, He L, Wang H, Middelberg A, Brewer CF, Reed J, Lehmann WD, Gabius HJ (2008) Phosphorylated human galectin-3: facile large-scale preparation of active lectin and detection of structural changes by CD spectroscopy. Biochim Biophys Acta 1780:716–722

    PubMed  Google Scholar 

  • Leibfried L, First NL (1979) Characterization of bovine follicular oocytes and their ability to mature in vitro. J Anim Sci 48:76–86

    PubMed  CAS  Google Scholar 

  • Leyden R, Velasco-Torrijos T, André S, Gouin S, Gabius HJ, Murphy PV (2009) Synthesis of bivalent lactosides based on terephthalamide, N, N′-diglucosylterephthalamide, and glycophane scaffolds and assessment of their inhibitory capacity on medically relevant lectins. J Org Chem 74:9010–9026

    Article  PubMed  CAS  Google Scholar 

  • Lohr M, Kaltner H, Lensch M, André S, Sinowatz F, Gabius HJ (2008) Cell-type-specific expression of murine multifunctional galectin-3 and its association with follicular atresia/luteolysis in contrast to pro-apoptotic galectins-1 and -7. Histochem Cell Biol 130:567–581

    Article  PubMed  CAS  Google Scholar 

  • Lohr M, Kaltner H, Schwartz-Albiez R, Sinowatz F, Gabius HJ (2010) Towards functional glycomics by lectin histochemistry: strategic probe selection to monitor core and branch-end substitutions and detection of cell-type and regional selectivity in adult mouse testis and epididymis. Anat Histol Embryol 39:481–493

    Article  PubMed  CAS  Google Scholar 

  • Monsigny M, Roche AC, Sene C, Maget-Dana R, Delmotte F (1980) Sugar-lectin interactions: how does wheat-germ agglutinin bind sialoglycoconjugates? Eur J Biochem 104:147–153

    Article  PubMed  CAS  Google Scholar 

  • Morelle W, Stechly L, André S, van Seuningen I, Porchet N, Gabius HJ, Michalski JC, Huet G (2009) Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking. Biol Chem 390:529–544

    Article  PubMed  CAS  Google Scholar 

  • Nishi N, Itoh A, Fujiyama A, Yoshida N, Araya S, Hirashima M, Shoji H, Nakamura T (2005) Development of highly stable galectins: truncation of the linker peptide confers protease-resistance on tandem-repeat type galectins. FEBS Lett 579:2058–2064

    Article  PubMed  CAS  Google Scholar 

  • Patsos G, Corfield A (2009) O-Glycosylation: structural diversity and functions. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 111–137

    Google Scholar 

  • Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J, Gabius HJ (2009) Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology 19:726–734

    Article  PubMed  CAS  Google Scholar 

  • Rapoport EM, André S, Kurmyshkina OV, Pochechueva TV, Severov VV, Pazynina GV, Gabius HJ, Bovin NV (2008) Galectin-loaded cells as a platform for the profiling of lectin specificity by fluorescent neoglycoconjugates: a case study on galectins-1 and -3 and the impact of assay setting. Glycobiology 18:315–324

    Article  PubMed  CAS  Google Scholar 

  • Roth J (1996) Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell type-specificity of cell surface glycoconjugate expression: analysis by the protein A-gold and lectin-gold techniques. Histochem Cell Biol 106:79–92

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  PubMed  Google Scholar 

  • Rüdiger H, Gabius HJ (2009) Plant lectins. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 301–315

    Google Scholar 

  • Saal I, Nagy N, Lensch M, Lohr M, Manning JC, Decaestecker C, André S, Kiss R, Salmon I, Gabius HJ (2005) Human galectin-2: expression profiling by RT-PCR/immunohistochemistry and its introduction as a histochemical tool for ligand localization. Histol Histopathol 20:1191–1208

    PubMed  CAS  Google Scholar 

  • Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius HJ (2010) Tumor suppressor p16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 277:3552–3563

    Article  PubMed  CAS  Google Scholar 

  • Sarter K, André S, Kaltner H, Lensch M, Schulze C, Urbonaviciute V, Schett G, Herrmann M, Gabius HJ (2009) Detection and chromatographic removal of lipopolysaccharide in preparations of multifunctional galectins. Biochem Biophys Res Commun 379:155–159

    Article  PubMed  CAS  Google Scholar 

  • Saussez S, Decaestecker C, Lorfevre F, Chevalier D, Mortuaire G, Kaltner H, André S, Toubeau G, Gabius HJ, Leroy X (2008) Increased expression and altered intracellular distribution of adhesion/growth-regulatory lectins galectins-1 and -7 during tumour progression in hypopharyngeal and laryngeal squamous cell carcinomas. Histopathology 52:483–493

    Article  PubMed  CAS  Google Scholar 

  • Schwartz-Albiez R (2009) Inflammation and glycosciences. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 447–467

    Google Scholar 

  • Schwarz A, Futerman AH (1997) Determination of the localization of gangliosides using anti-ganglioside antibodies: comparison of fixation methods. J Histochem Cytochem 45:611–618

    Article  PubMed  CAS  Google Scholar 

  • Sinowatz F, Töpfer-Petersen E, Kölle S, Palma G (2001) Functional morphology of the zona pellucida. Anat Histol Embryol 30:257–263

    Article  PubMed  CAS  Google Scholar 

  • Smetana K Jr, Dvořánková B, Chovanec M, Bouček J, Klíma J, Motlík J, Lensch M, Kaltner H, André S, Gabius HJ (2006) Nuclear presence of adhesion/growth-regulatory galectins in normal/malignant cells of squamous epithelial origin. Histochem Cell Biol 125:171–182

    Article  PubMed  CAS  Google Scholar 

  • Solís D, Maté MJ, Lohr M, Ribeiro JP, López-Merino L, André S, Buzamet E, Cañada FJ, Kaltner H, Lensch M, Ruiz FM, Haroske G, Wollina U, Kloor M, Kopitz J, Sáiz JL, Menéndez M, Jiménez-Barbero J, Romero A, Gabius HJ (2010) N-Domain of human adhesion/growth-regulatory galectin-9: preference for distinct conformers and non-sialylated N-glycans and detection of ligand-induced structural changes in crystal and solution. Int J Biochem Cell Biol 42:1019–1029

    Article  PubMed  Google Scholar 

  • Sparrow CP, Leffler H, Barondes SH (1987) Multiple soluble β-galactoside-binding lectins from human lung. J Biol Chem 262:7383–7390

    PubMed  CAS  Google Scholar 

  • Stechly L, Morelle W, Dessein AF, André S, Grard G, Trinel D, Dejonghe MJ, Leteurtre E, Drobecq H, Trugnan G, Gabius HJ, Huet G (2009) Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10:438–450

    Article  PubMed  CAS  Google Scholar 

  • Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283:20547–20559

    Article  PubMed  CAS  Google Scholar 

  • Szabo P, Dam TK, Smetana K Jr, Dvořánková B, Kübler D, Brewer CF, Gabius HJ (2009) Phosphorylated human lectin galectin-3: analysis of ligand binding by histochemical monitoring of normal/malignant squamous epithelia and by isothermal titration calorimetry. Anat Histol Embryol 38:68–75

    Article  PubMed  CAS  Google Scholar 

  • Talevi R, Gualtieri R, Tartaglione G, Fortunato A (1997) Heterogeneity of the zona pellucida carbohydrate distribution in human oocytes failing to fertilize in vitro. Hum Reprod 12:2773–2780

    Article  PubMed  CAS  Google Scholar 

  • Unverzagt C, André S, Seifert J, Kojima S, Fink C, Srikrishna G, Freeze H, Kayser K, Gabius HJ (2002) Structure-activity profiles of complex biantennary glycans with core fucosylation and with/without additional α2,3/α2,6 sialylation: synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake. J Med Chem 45:478–491

    Article  PubMed  CAS  Google Scholar 

  • van den Eijnden DH (2000) On the origin of oligosaccharide species: glycosyltransferases in action. In: Ernst B, Hart GW, Sinaÿ P (eds) Carbohydrates in chemistry and biology. Wiley-VCH, Weinheim, pp 589–624

    Chapter  Google Scholar 

  • Velásquez JG, Canovas S, Barajas P, Marcos J, Jiménez-Movilla M, Gallego RG, Ballesta J, Avilés M, Coy P (2007) Role of sialic acid in bovine sperm-zona pellucida binding. Mol Reprod Dev 74:617–628

    Article  PubMed  Google Scholar 

  • Villalobo A, Nogales-González A, Gabius HJ (2006) A guide to signalling pathways connecting protein-glycan interaction with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol 18:1–37

    CAS  Google Scholar 

  • Wang J, Lu ZH, Gabius HJ, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Singh T, Liu JH, Krzeminski M, Russwurm R, Siebert HC, Bonvin AMJJ, André S, Gabius HJ (2007) Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. Glycobiology 17:165–184

    Article  PubMed  CAS  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 87–110

    Google Scholar 

Download references

Acknowledgments

The study was generously supported by the EC research program GlycoHIT and the DFG Research Unit 1041 “Germ Cell Potential” (HA 3519/1-1; WO 685/14-1). The authors sincerely thank Prof. E. Wolf and Mr. T. Güngör (Chair for Molecular Animal Breeding and Biotechnology, LMU Munich) for providing bovine oocytes as well as Mrs. M. Pansa and Mrs. M. Settles (Institute of Anatomy, Histology and Embryology) for excellent technical assistance. The inspiring discussions with Drs. B. Friday and Dr. B. Tab are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Sinowatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habermann, F.A., André, S., Kaltner, H. et al. Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy. Histochem Cell Biol 135, 539–552 (2011). https://doi.org/10.1007/s00418-011-0814-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0814-2

Keywords

Navigation