Skip to main content

Advertisement

Log in

Overexpression of hexokinase-2 in giant cell tumor of bone is associated with false positive in bone tumor on FDG-PET/CT

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The aim of the current study was to evaluate the usefulness of maximum standardized uptake value (SUVmax) in 2-deoxy-2-F18-fluoro-d-glucose positron emission tomography combined with computed tomography (18F-FDG-PET/CT) for preoperative differential diagnosis between benign and malignant bone tumors.

Materials and methods

Seventy-nine patients with bone tumors were examined by FDG-PET prior to histopathological diagnosis. The SUVmax was calculated and compared between benign and malignant lesions, and among different histopathological subgroups, to identify false-positive histological subtypes.

Results

There was a statistically significant difference in the SUVmax of benign (3.7 ± 3.3; n = 17) and malignant (5.3 ± 3.3; n = 62) bone tumors. However, receiver operating characteristic curve analysis revealed the poor accuracy of this distinction. The cut-off value was determined to be 2.6, while the value of sensitivity and specificity was calculated to be 74.2 and 64.7 %, respectively. Giant cell tumor of bone (9.0 ± 2.0; n = 5) displayed a higher SUVmax than osteosarcoma (4.2 ± 2.3; n = 18). Immunohistochemical analysis demonstrated that markers of these cancers, hexokinase-2 (HK-2) and glucose transporter type 1 (GLUT-1), supported our findings.

Conclusion

The poor accuracy of SUVmax in 18F-FDG-PET/CT in distinguishing malignant from benign bone tumors was confirmed; some benign bone tumors showed high FDG uptake. Giant cell tumor of bone was a major false-positive histopathological subtype of bone tumors, showing high FDG accumulation. HK-2 contributed significantly to FDG uptake, whereas GLUT-1 appeared to play no role in FDG uptake in giant cell tumor of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kern KA, Brunetti A, Norton JA, Chang AE, Malawer M, Lack E et al (1988) Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 29:181–186

    PubMed  CAS  Google Scholar 

  2. Aoki J, Endo K, Watanabe H, Shinozaki T, Yanagawa T, Ahmed AR et al (2003) FDG-PET for evaluating musculoskeletal tumors: a review. J Orthop Sci 8:435–441

    Article  PubMed  Google Scholar 

  3. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N et al (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    PubMed  CAS  Google Scholar 

  4. Feldman F, van Heertum R, Manos C (2003) 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 32:201–208

    Article  PubMed  Google Scholar 

  5. Charest M, Hickeson M, Lisbona R, Novales-Diaz JA, Derbekyan V, Turcotte RE (2009) FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur J Nucl Med Mol Imaging 36:1944–1951

    Article  PubMed  Google Scholar 

  6. Benz MR, Dry SM, Eilber FC, Allen-Auerbach MS, Tap WD, Elashoff D et al (2010) Correlation between glycolytic phenotype and tumor grade in soft-tissue sarcomas by 18F-FDG PET. J Nucl Med 51:1174–1181

    Article  PubMed  Google Scholar 

  7. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF (2000) (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 6:1279–1287

    Google Scholar 

  8. Eary JF, Conrad EU, Bruckner JD, Folpe A, Hunt KJ, Mankoff DA et al (1998) Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 4:1215–1220

    PubMed  CAS  Google Scholar 

  9. Eftekhari F (2009) Imaging assessment of osteosarcoma in childhood and adolescence: diagnosis, staging, and evaluating response to chemotherapy. Cancer Treat Res 152:33–62

    Article  PubMed  Google Scholar 

  10. Cheon GJ, Kim MS, Lee JA, Lee SY, Cho WH, Song WS et al (2009) Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med 50:1435–1440

    Article  PubMed  CAS  Google Scholar 

  11. Dutour A, Decouvelaere AV, Monteil J, Duclos ME, Roualdes O, Rousseau R et al (2009) 18F-FDG PET SUVmax correlates with osteosarcoma histologic response to neoadjuvant chemotherapy: preclinical evaluation in an orthotopic rat model. J Nucl Med 50:1533–1540

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe H, Shinozaki T, Yanagawa T, Aoki J, Tokunaga M, Inoue T et al (2000) Glucose metabolic analysis of musculoskeletal tumours using 18fluorine-FDG PET as an aid to preoperative planning. J Bone Joint Surg Br 82:760–767

    Article  PubMed  CAS  Google Scholar 

  13. Hawkins DS, Conrad EU III, Butrynski JE, Schuetze SM, Eary JF (2009) [F-18]-fluorodeoxy-d-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 115:3519–3525

    Article  PubMed  Google Scholar 

  14. Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Elashoff D et al (2009) FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 15:2856–2863

    Article  PubMed  CAS  Google Scholar 

  15. Sato J, Yanagawa T, Dobashi Y, Yamaji T, Takagishi K, Watanabe H (2008) Prognostic significance of 18F-FDG uptake in primary osteosarcoma after but not before chemotherapy: a possible association with autocrine motility factor/phosphoglucose isomerase expression. Clin Exp Metastasis 25:427–435

    Article  PubMed  Google Scholar 

  16. Adler LP, Blair HF, Makley JT, Williams RP, Joyce MJ, Leisure G et al (1991) Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 32:1508–1512

    PubMed  CAS  Google Scholar 

  17. Dehdashti F, Siegel BA, Griffeth LK, Fusselman MJ, Trask DD, McGuire AH et al (1996) Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18]fluoro-2-deoxy-d-glucose. Radiology 200:243–247

    PubMed  CAS  Google Scholar 

  18. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Tokunaga M, Koyama Y et al (2003) FDG-PET for preoperative differential diagnosis between benign and malignant soft tissue masses. Skeletal Radiol 32:133–138

    Article  PubMed  CAS  Google Scholar 

  19. Hamada K, Tomita Y, Qiu Y, Zhang B, Ueda T, Myoui A et al (2008) 18F-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase 2. Ann Nucl Med 22:699–705

    Article  PubMed  Google Scholar 

  20. Hamada K, Ueda T, Tomita Y, Higuchi I, Inoue A, Tamai N et al (2006) False positive 18F-FDG PET in an ischial chondroblastoma; an analysis of glucose transporter 1 and hexokinase II expression. Skeletal Radiol 35:306–310

    Article  PubMed  Google Scholar 

  21. Bischoff M, Bischoff G, Buck A, von Baer A, Pauls S, Scheffold F et al (2010) Integrated FDG-PET-CT: its role in the assessment of bone and soft tissue tumors. Arch Orthop Trauma Surg 130:819–827

    Article  PubMed  Google Scholar 

  22. Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725

    Article  PubMed  CAS  Google Scholar 

  23. Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D et al (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13:198–208

    Article  PubMed  CAS  Google Scholar 

  24. Paudyal B, Oriuchi N, Paudyal P, Higuchi T, Nakajima T, Endo K (2008) Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-d-glucose positron emission tomography. Cancer Sci 99:260–266

    Article  PubMed  CAS  Google Scholar 

  25. Fonteyne P, Casneuf V, Pauwels P, Van Damme N, Peeters M, Dierckx R et al (2009) Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma. Histol Histopathol 24:971–977

    PubMed  CAS  Google Scholar 

  26. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL (2002) Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29:443–453

    Article  PubMed  CAS  Google Scholar 

  27. Campanacci M, Baldini N, Boriani S, Sudanese A (1987) J Bone Joint Surg Am 69:106–114

    PubMed  CAS  Google Scholar 

  28. Reid R, Banerjee SS, Sciot R (2001) Giant cell tumor. In: Fletchcher CDM, Unni KK, Mertens F (eds) World Health Organization classification of tumors: pathology and genetics; tumors of soft tissue and bone. International Agency for Research on Cancer, Lyon, pp 310–312

    Google Scholar 

  29. Balke M, Schremper L, Gebert C, Ahrens H, Streitbuerger A, Koehler G et al (2008) Giant cell tumor of bone: treatment and outcome of 214 cases. J Cancer Res Clin Oncol 134:969–978

    Article  PubMed  CAS  Google Scholar 

  30. Klenke FM, Wenger DE, Inwards CY, Rose PS, Sim FH (2011) Recurrent giant cell tumor of long bones: analysis of surgical management. Clin Orthop Relat Res 469:1181–1187

    Article  PubMed  Google Scholar 

  31. Kivioja AH, Blomqvist C, Hietaniemi K, Trovik C, Walloe A, Bauer HC et al (2008) Cement is recommended in intralesional surgery of giant cell tumors: a Scandinavian Sarcoma Group study of 294 patients followed for a median time of 5 years. Acta Orthop 79:86–93

    Article  PubMed  Google Scholar 

  32. Viswanathan S, Jambhekar NA (2010) Metastatic giant cell tumor of bone: are there associated factors and best treatment modalities? Clin Orthop Relat Res 468:827–833

    Article  PubMed  Google Scholar 

  33. Dominkus M, Ruggieri P, Bertoni F, Briccoli A, Picci P, Rocca M et al (2006) Histologically verified lung metastases in benign giant cell tumours—14 cases from a single institution. Int Orthop 30:499–504

    Article  PubMed  CAS  Google Scholar 

  34. Abdel-Nabi H, Doerr RJ, Lamonica DM, Cronin VR, Galantowicz PJ, Carbone GM et al (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760

    PubMed  CAS  Google Scholar 

  35. Fuster D, Duch J, Paredes P, Velasco M, Muñoz M, Santamaría G et al (2008) Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol 26:4746–4751

    Article  PubMed  Google Scholar 

  36. Christensen JD, Colby TV, Patz EF Jr (2010) Correlation of [18F]-2-fluoro-deoxy-d-glucose positron emission tomography standard uptake values with the cellular composition of stage I nonsmall cell lung cancer. Cancer 116:4095–4102

    Article  PubMed  Google Scholar 

  37. Noguchi Y, Marat D, Saito A, Yoshikawa T, Doi C, Fukuzawa K et al (1999) Expression of facilitative glucose transporters in gastric tumors. Hepatogastroenterol 46:2683–2689

    CAS  Google Scholar 

  38. Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y et al (2005) [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 7:369–379

    Article  PubMed  CAS  Google Scholar 

  39. Paudyal B, Paudyal P, Oriuchi N, Tsushima Y, Nakajima T, Endo K (2008) Clinical implication of glucose transport and metabolism evaluated by 18F-FDG PET in hepatocellular carcinoma. Int J Oncol 33:1047–1054

    PubMed  CAS  Google Scholar 

  40. Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT (1997) Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 80:1046–1051

    Article  PubMed  CAS  Google Scholar 

  41. Ahrens WA, Ridenour RV 3rd, Caron BL, Miller DV, Folpe AL (2008) GLUT-1 expression in mesenchymal tumors: an immunohistochemical study of 247 soft tissue and bone neoplasms. Hum Pathol 39:1519–1526

    Article  PubMed  CAS  Google Scholar 

  42. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T (2006) Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging 33:683–691

    Article  PubMed  CAS  Google Scholar 

  43. Endo M, Tateishi U, Seki K, Yamaguchi U, Nakatani F, Kawai A et al (2007) Prognostic implications of glucose transporter protein-1 (glut-1) overexpression in bone and soft-tissue sarcomas. Jpn J Clin Oncol 37:955–960

    Article  PubMed  Google Scholar 

  44. Cifuentes M, García MA, Arrabal PM, Martínez F, Yañez MJ, Jara N et al (2011) Insulin regulates GLUT1-mediated glucose transport in MG-63 human osteosarcoma cells. J Cell Physiol 226:1425–1432

    Article  PubMed  CAS  Google Scholar 

  45. Robey RB, Hay N (2005) Mitochondrial hexokinases: guardians of the mitochondria. Cell Cycle 4:654–658

    Article  PubMed  CAS  Google Scholar 

  46. Mathupala SP, Rempel A, Pedersen PL (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 29:339–343

    Article  PubMed  CAS  Google Scholar 

  47. Ito T, Noguchi Y, Satoh S, Hayashi H, Inayama Y, Kitamura H (1998) Expression of facilitative glucose transporter isoforms in lung carcinomas: its relation to histologic type, differentiation grade, and tumor stage. Mod Pathol 11:437–443

    PubMed  CAS  Google Scholar 

  48. Shim HK, Lee WW, Park SY, Kim H, So Y, Kim SE (2009) Expressions of glucose transporter Types 1 and 3 and hexokinase-II in diffuse large B-cell lymphoma and other B-cell non-Hodgkin’s lymphomas. Nucl Med Biol 36:191–197

    Article  PubMed  CAS  Google Scholar 

  49. Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z (2000) F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med 25:273–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wakasa for histopathological diagnosis of bone tumors, and also thank Dr Nishikubo for examination of 18F-FDG-PET/CT data.

Conflict of interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Hoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshi, M., Takada, J., Oebisu, N. et al. Overexpression of hexokinase-2 in giant cell tumor of bone is associated with false positive in bone tumor on FDG-PET/CT. Arch Orthop Trauma Surg 132, 1561–1568 (2012). https://doi.org/10.1007/s00402-012-1588-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1588-2

Keywords

Navigation