Skip to main content
Log in

Modified apple polysaccharide prevents against tumorigenesis in a mouse model of colitis-associated colon cancer: role of galectin-3 and apoptosis in cancer prevention

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer (CRC) is one of the most common and preventable cancers. Regular consumption of apples is conducive to reduction in CRC risk.

Aim of the study

To evaluate effects of modified apple polysaccharide (MAP) on tumorigenesis in a mouse model of colitis-associated colon cancer.

Methods

One hundred male ICR mice were administered with 1, 2-dimethyl-hydrazine (DMH) and dextran sodium sulfate (DSS). Forty mice were given no further treatment, the rest were fed basal diet blended with three different doses of MAP; 2.5, 5, and 10% (20 mice in each group).

Results

MAP significantly protected ICR mice against DMH/DSS-induced tumorigenesis. The incidence of tumor development was 90% (18/20) in the mice treated with DMH/DSS, but that was reduced to 25% (5/20), 15% (3/20), and 5% (1/20), respectively, in the mice treated with basal diets plus 2.5, 5, and 10% of MAP. Study of apoptosis of colonic epithelial cells revealed that MAP moderately increased apoptosis, suggesting that the anti-tumor potency of MAP was probably attributed to its ability to induce apoptosis. Western blot analysis demonstrated that carbohydrate-binding protein galectin-3 changed in both the nucleus and the cytoplasm during the process from colitis to colon cancer in the model. And MAP could inhibit the binding of galectin-3 to its ligand: this is, at least in part, the possible mechanism of MAP by enhancing apoptosis and preventing tumorigenesis.

Conclusions

These data suggest that MAP has a potential role in clinical prevention and treatment for colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  Google Scholar 

  2. Ballkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  Google Scholar 

  3. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287:G7–G17

    Article  CAS  Google Scholar 

  4. Munkholm P (2003) The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 18(Suppl 2):1–5

    Article  Google Scholar 

  5. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R et al (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348:891–899

    Article  CAS  Google Scholar 

  6. Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J et al (2006) Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355:885–895

    Article  CAS  Google Scholar 

  7. Joshi GP, Gertler R, Fricker R (2007) Cardiovascular thromboembolic adverse effects associated with cyclooxygenase-2 selective inhibitors and nonselective antiinflammatory drugs. Anesth Analg 105:1793–1804

    Article  CAS  Google Scholar 

  8. Solomon SD, McMurray JJ, Pfeffer MA et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080

    Article  CAS  Google Scholar 

  9. Basterfield L, Reul JM, Mathers JC (2005) Impact of physical activity on intestinal cancer development in mice. J Nutr 135(12 Suppl):3002S–3008S

    CAS  Google Scholar 

  10. Papapolychroniadis C (2004) Environmental and other risk factors for colorectal cancinogenesis. Tech Coloproctol 8:S7–S9

    Article  Google Scholar 

  11. Austin GL, Adair LS, Galanko JA, Martin CF, Satia JA, Sandler RS (2007) A diet high in fruits and low in meats reduces the risk of colorectal adenomas. J Nutr 137:999–1004

    CAS  Google Scholar 

  12. Hayashi A, Gillen AC, Lott JR (2000) Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern Med Rev 5:546–552

    CAS  Google Scholar 

  13. Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R et al (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862

    Article  CAS  Google Scholar 

  14. Pienta KJ, Naik H, Akhtar A, Yamazaki K, Replogle TS, Lehr J et al (1995) Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst 87:348–353

    Article  CAS  Google Scholar 

  15. Rabinovich GA, Baum LG, Tinari N, Paganelli R, Natoli C, Liu FT et al (2002) Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 23:313–320

    Article  CAS  Google Scholar 

  16. Perillo L, Marcus ME, Baum LG (1998) Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med 76:402–412

    Article  CAS  Google Scholar 

  17. Califice S, Castronovo V, Bracke M, van den Brule F (2004) Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs. tumor promotion of cytoplasmic galectin-3. Oncogene 23:7527–7536

    Article  CAS  Google Scholar 

  18. Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A, Raz A (2004) Galectin-3, a novel binding partner of beta-catenin. Cancer Res 64:636–637

    Article  Google Scholar 

  19. Sacchettini JC, Baum LG, Brewer CF (2001) Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40:3009–3015

    Article  CAS  Google Scholar 

  20. Gong HC, Honjo Y, Nangia-Makker P, Hogan V, Mazurak N, Bresalier RS et al (1999) The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res 59:6239–6245

    CAS  Google Scholar 

  21. Rubinstein N, Ilarregui JM, Toscano MA (2004) The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens 64:1–12

    Article  CAS  Google Scholar 

  22. Liu FT, Hsu DK (2007) The role of galectin-3 in promotion of the inflammatory response. Drug News Perspect 20:455–460

    CAS  Google Scholar 

  23. Song YK, Billiar TR, Lee YJ (2002) Role of galectin-3 in breast cancer metastasis: involvement of nitric oxide. Am J Pathol 160:1069–1075

    Article  CAS  Google Scholar 

  24. Honjo Y, Nangia-Makker P, Inohara H, Raz A (2001) Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin Cancer Res 7:661–668

    CAS  Google Scholar 

  25. Bresalier RS, Mazurek N, Sternberg LR, Byrd JC, Yunker CK, Nangia-Makker P et al (1998) Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside-binding protein galectin-3. Gastroenterology 115:287–296

    Article  CAS  Google Scholar 

  26. Matarrese P, Tinarr N, Semeraro ML, Natoli C, Lacobelli S, Malorni W (2000) Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett 473:311–315

    Article  CAS  Google Scholar 

  27. Moon MK, Lee YJ, Battle P, Jessup JM, Raz V, Kim HRC (2001) Galectin-3 protects human breast cancinoma cells against nitric oxide-induced apoptosis, implication of galectin function during metastasis. Am J Pathol 159:1055–1060

    Article  CAS  Google Scholar 

  28. Endo K, Kohnoe S, Tsujita E, Watanabe A, Nakashima H, Baba H et al (2005) Galectin-3 expression is a potent prognostic marker in colorectal cancer. Anticancer Res 25:3117–3121

    CAS  Google Scholar 

  29. Tsuboi K, Shimura T, Masuda N, Ide M, Tsutsumi S, Yamaguchi S, Asao T, Kuwano H (2007) Galectin-3 expression in colorectal cancer: relation to invasion and metastasis. Anticancer Res 27:2289–2296

    CAS  Google Scholar 

  30. Baldus SE, Zirbes TK, Weingarten M, Fromm S, Glossmann J, Hanisch F-G et al (2000) Increased galectin-3 expression in gastric cancer: correlations with histopathological subtypes, galactosylated antigens and tumor cell proliferation. Tumor Biol 21:258–266

    Article  CAS  Google Scholar 

  31. Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT (1999) Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 81:519–526

    Article  CAS  Google Scholar 

  32. van den Brule FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu FT et al (1996) Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol 27:1185–1191

    Article  Google Scholar 

  33. Gillenwater A, Xu X-C, El-Naggar AK, Clayman GL, Lotan R (1996) Expression of galectins in head and neck squamous cell carcinoma. Head Neck 18:422–432

    Article  CAS  Google Scholar 

  34. Inohara H, Honjo Y, Yoshii T, Akahani S, Yoshida J, Hattori K et al (1999) Expression of galectin-3 in fine needle aspirates as a differential diagnostic marker between benign and malignant thyroid neoplasms. Cancer (Phila) 85:2475–2484

    Article  CAS  Google Scholar 

  35. Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida JI et al (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635–4640

    CAS  Google Scholar 

  36. Prieto VG, Mourad-Zeidan AA, Melnikova V, Johnson MM, Lopez A, Diwan AH et al (2006) Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res 12:6709–6715

    Article  CAS  Google Scholar 

  37. Lotz MM, Andrews CW Jr, Korzelius CA, Lee EC, Steele GD Jr, Clarke A et al (1993) Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci USA 90:3466–3470

    Article  CAS  Google Scholar 

  38. Castronovo V, Van Den Brule FA, Jackers P, Clausse N, Liu FT, Gille C et al (1996) Decreased expression of galectin-3 is associated with progression of human breast cancer. J Pathol 179:43–48

    Article  CAS  Google Scholar 

  39. Merseburger AS, Kramer MW, Hennenlotter J, Simon P, Knapp J, Hartmann JT, Stenzl A et al (2007) Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer. Prostate 68:72–77

    Article  Google Scholar 

  40. Francois C, van Velthoven R, De Lathouwe O, Moreno C, Peltier A, Kaltner H et al (1999) Galectin-1 and galectin-3 binding pattern expression in renal cell carcinomas. Am J Clin Pathol 112:194–203

    CAS  Google Scholar 

  41. Piantelli M, Lacobelli S, Almadori G, Lezzi M, Tinari N, Natoli C et al (2002) Lack of expression of galectin-3 is associated with a poor outcome in node-negative patients with laryngeal squamous-cell carcinoma. J Clin Oncol 20:3850–3856

    Article  CAS  Google Scholar 

  42. Nakahara S, Oka N, Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10:267–275

    Article  CAS  Google Scholar 

  43. Jedrychowski W, Maugeri U (2009) An apple a day may hold colorectal cancer at bay: recent evidence from a case-control study. Rev Environ Health 24:59–74

    Article  CAS  Google Scholar 

  44. Jedrychowski W, Maugeri U, Popiela T, Kulig J, Sochacka-Tatara E, Pac A et al (2010) Case-control study on beneficial effect of regular consumption of apples on colorectal cancer risk in a population with relatively low intake of fruits and vegetables. Eur J Cancer Prev 19:42–47

    Article  CAS  Google Scholar 

  45. Gerhauser C (2008) Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med 74:1608–1624

    Article  CAS  Google Scholar 

  46. Kern M, Pahlke G, Balavenkatraman KK, Böhmer FD, Marko D (2007) Apple polyphenols affect protein kinase C activity and the onset of apoptosis in human colon carcinoma cells. J Agric Food Chem 55:4999–5006

    Article  CAS  Google Scholar 

  47. Veeriah S, Kautenburger T, Habermann N, Sauer J, Dietrich H, Will F, Pool-Zobel BL (2006) Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics. Mol Carcinog 45:164–174

    Article  CAS  Google Scholar 

  48. Barth SW, Fa¨hndrich C, Bub A, Dietrich H, Watzl B, Will F et al (2005) Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats. Carcinogenesis 26:1414–1421

    Article  CAS  Google Scholar 

  49. Liu L, Wang ZP, Xu CT, Pan BR, Mei QB, Long Y et al (2003) Effects of Rheum tanguticm polysaccharide on TNBS-induced colitis and CD4+ T cells in rats. World J Gastroenterol 9:2284–2288

    CAS  Google Scholar 

  50. Li Y, Niu Y, Wu H, Zhang B et al (2009) PC-407, a celecoxib derivative, inhibited the growth of colorectal tumor in vitro and in vivo. Cancer Sci 100:2451–2458

    Article  CAS  Google Scholar 

  51. Inufusa H, Nakamura M, Adachi T, Aga M, Kurimoto M, Nakatani Y, Wakano T, Miyake M, Okuno K, Shiozaki H, Yasutomi M (2001) Role of galectin-3 in adenocarcinoma liver metastasis. Int J Oncol 19:913–919

    CAS  Google Scholar 

  52. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  CAS  Google Scholar 

  53. Gossé F, Guyot S, Roussi S, Lobstein A, Fischer B, Seiler N et al (2005) Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Cancinogenesis 26:1291–1295

    Article  Google Scholar 

  54. Kim HR, Lin HM, Billiran H, Raz A (1999) Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res 59:4148–4154

    CAS  Google Scholar 

  55. Hsu DK, Yang RY, Pan ZX, Yu L, Salomon DR, Fung-Leung WP et al (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083

    Article  CAS  Google Scholar 

  56. Inohara H, Akahani S, Raz A (1998) Galectin-3 in stimulates cell proliferation. Exp Cell Res 245:294–302

    Article  CAS  Google Scholar 

  57. Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, Poirier F, Wang JL (2002) Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12:329–337

    Article  CAS  Google Scholar 

  58. Lin HM, Pestell RG, Raz A, Kim HR (2002) Galectin-3 enhances cyclin D(1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene 21:8001–8010

    Article  CAS  Google Scholar 

  59. Yoshii T, Fukumori T, Honjo Y, Inohara H, Choi Kim HR, Raz A (2002) Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 277:6852–6857

    Article  Google Scholar 

  60. Pozharisski KM, Likhachev AJ, Klimashevski VF, Shaposhnikov JD (1979) Experimental intestinal cancer research with special reference to human pathology. Adv Cancer Res 30:165–237

    Article  CAS  Google Scholar 

  61. Mori H, Ohbayashi F, Hirono I, Shimada T, Williams GM (1984) Absence of genotoxicity of the carcinogenic sulfated polysaccharides carrageenan and dextran sulfate in mammalian DNA repair and bacterial mutagenicity assays. Nutr Cancer 6:92–97

    Article  CAS  Google Scholar 

  62. Kohno H, Suzuki R, Sugie S, Tanaka T (2005) Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1, 2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci 96:69–76

    Article  CAS  Google Scholar 

  63. Muller S, Schaffer T, Flogerzi B, Fleetwood A, Weimann R, Schoepfer AM, Seibold F (2006) Galectin-3 modulates T cell activity and is reduced in the inflamed intestinal epithelium in IBD. Inflamm Bowel Dis 12:588–597

    Article  Google Scholar 

  64. Gorelik E, Galili U, Raz A (2001) On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev 20:245–277

    Article  CAS  Google Scholar 

  65. Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA (2007) Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 64:1679–1700

    Article  CAS  Google Scholar 

  66. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    Article  CAS  Google Scholar 

  67. Toscano MA, Ilarregui JM, Bianco GA, Campagna L, Croci DO, Salatino M, Rabinovich GA (2007) Dissecting the pathophysiologic role of endogenous lectins: glycan-binding proteins with cytokine-like activity? Cytokine Growth Factor Rev 18:57–71

    Article  CAS  Google Scholar 

  68. Tomita M, Miwa M, Ouchi S, Oda T, Aketagawa J, Goto Y, Hayashi M (2009) Nonlinear intestinal absorption of (1→3)-β-D-glucan caused by absorptive and secretory transporting system. Biol Pharm Bull 32:1295–1297

    Article  CAS  Google Scholar 

  69. Jain A, Gupta Y, Jain SK (2007) Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci 10:86–128

    CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the grant (No. 2010CB535002), from National Program on Key Basic Research Project of China (973 Program), and the grant (No. 2010ZDKG-47), from the Technology Gallery of Shaanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shousong Cao or Qibing Mei.

Additional information

Yuhua Li and Li Liu are Co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, L., Niu, Y. et al. Modified apple polysaccharide prevents against tumorigenesis in a mouse model of colitis-associated colon cancer: role of galectin-3 and apoptosis in cancer prevention. Eur J Nutr 51, 107–117 (2012). https://doi.org/10.1007/s00394-011-0194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0194-3

Keywords

Navigation