Skip to main content

Advertisement

Log in

Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Immunotherapy can be an effective treatment for pediatric medulloblastoma (MB) patients. However, major subpopulations do not respond to immunotherapy, due to the lack of antigenic mutations or the immune-evasive properties of MB cells. Clinical observations suggest that radiation therapy (RT) may expand the therapeutic reach of immunotherapy. The aim of the present investigation is to study the effect of low-dose X-ray radiation (LDXR, 1 Gy) on the functional immunological responses of MB cells (DAOY, D283, and D341).

Methods

Induction of MB cell death was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Production of reactive oxygen species (ROS) was measured by fluorescent probes. Changes in the expression of  human leukocyte antigen (HLA) molecules and caspase-3 activities during treatment were analyzed using Western blotting and caspase-3 assay.

Results

Western blot analysis demonstrated that LDXR upregulated the expression of HLA class I and HLA II molecules by more than 20% compared with control and high-dose (12 Gy) groups in vitro. Several of these HLA subtypes, such as MAGE C1, CD137, and ICAM-1, have demonstrated upregulation. In addition, LDXR increases ROS production in association with phosphorylation of NF-κB and cell surface expression of mAb target molecules (HER2 and VEGF). These data suggest that a combined LDXR and mAb therapy can create a synergistic effect in vitro.

Conclusion

These results suggest that LDXR modulates HLA molecules, leading to alterations in T-cell/tumor-cell interaction and enhancement of T-cell-mediated MB cell death. Also, low-dose radiotherapy combined with monoclonal antibody therapy may one day augment the standard treatment for MB, but more investigation is needed to prove its utility as a new therapeutic combination for MB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coluccia D, Figuereido C, Isik S et al (2016) Medulloblastoma: tumor biology and relevance to treatment and prognosis paradigm. Curr Neurol Neurosci Rep 16:43

    Article  PubMed  Google Scholar 

  2. Gupta T, Shirsat N, Jalali R (2015) Molecular subgrouping of medulloblastoma: impact upon research and clinical practice. Curr Pediatr Rev 11:106–119

    Article  CAS  PubMed  Google Scholar 

  3. Khatua S, Zaky W (2014) The biologic era of childhood medulloblastoma and clues to novel therapies. Future Oncol 10:637–645

    Article  CAS  PubMed  Google Scholar 

  4. Pandey R, Shankar BS, Sharma D, Sainis KB (2005) Low dose radiation induced immunomodulation: effect on macrophages and CD8+ T cells. Int J Radiat Biol 81:801–812

    Article  CAS  PubMed  Google Scholar 

  5. Demaria S, Formenti SC (2013) Radiotherapy effects on antitumor immunity: implications for cancer treatment. Front Oncol 3:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gameiro SR, Jammeh ML, Wattenberg MM et al (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5(403–416):2014

    Google Scholar 

  7. Chow KK, Gottschalk S (2011) Cellular immunotherapy for high-grade glioma. Immunotherapy 3:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith C, Santi M, Rushing EJ et al (2011) Characterization of signaling function and expression of HLA class I molecules in medulloblastoma. J Neuro-Oncol 103:197–206

    Article  CAS  Google Scholar 

  9. Bodey B, Bodey B Jr, Siegel SE (1995) Immunophenotypic characterization of infiltrating polynuclear and mononuclear cells in childhood brain tumors. Mod Pathol 8:333–338

    CAS  PubMed  Google Scholar 

  10. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haque A, Das A, Hajiaghamohseni LM et al (2007) Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells. Cancer Immunol Immunothery 56:615–625

    Article  CAS  Google Scholar 

  12. Dickgreber N, Stoitzner P, Bai Y et al (2009) Targeting antigen to MHC class II molecules promotes efficient cross-presentation and enhances immunotherapy. J Immunol 182:1260–1269,2009

    Article  CAS  PubMed  Google Scholar 

  13. Håkerud M, Waeckerle-Men Y, Selbo PK et al (2014) Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen. J Control Release 174:143–150

    Article  PubMed  Google Scholar 

  14. Thibodeau J, Bourgeois-Daigneault MC, Lapointe R (2012) Targeting the MHC class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 1:908–916

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wattenberg MM, Kwilas AR, Gameiro SR et al (2014) Expanding the use of monoclonal antibody therapy of cancer by using ionising radiation to upregulate antibody targets. Br J Cancer 110:1472–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Das A, Banik NL, Ray SK (2010) Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 116:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Das A, McDonald DG, Dixon-Mah YN et al (2016) RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma. Tumor Biol 37:7525–7534

    Article  CAS  Google Scholar 

  18. Rieken S, Rieber J, Brons S, Habermehl D, Rief H, Orschiedt L, Lindel K, Weber KJ, Debus J, Combs SE (2015 May) Radiation-induced motility alterations in medulloblastoma cells. J Radiat Res 56(3):430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rasband WS, ImageJ U S National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2016

  20. Sharma A, Bode B, Wenger RH et al (2011) γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 6:e28217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JA, Averbook BJ, Chambers K et al (2001) Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 61:2031–2037

    CAS  PubMed  Google Scholar 

  22. Tomita Y, Nishiyama T, Watanabe H et al (1990) Expression of intercellular adhesion molecule-1 (ICAM-1) on renal-cell cancer: possible significance in host immune responses. Int J Cancer 46:1001–1006

    Article  CAS  PubMed  Google Scholar 

  23. Gualde N, Goodwin JS (1984) Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of suppressor/cytotoxic T-cell subset. Cell Immunol 84:439–445

    Article  CAS  PubMed  Google Scholar 

  24. Shankar B, Premachandran S, Bharambe SD et al (1999) Modification of immune response by low dose ionizing radiation: role of apoptosis. Immunol Lett 68:237–245

    Article  CAS  PubMed  Google Scholar 

  25. Yu HS, Song AQ, Lu YD et al (2004) Effects of low-dose radiation on tumor growth, erythrocyte immune function and SOD activity in tumor-bearing mice. Chin Med J 117:1036–1039

    CAS  PubMed  Google Scholar 

  26. Garnett CT, Palena C, Chakraborty M et al (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64:7985–7994

    Article  CAS  PubMed  Google Scholar 

  27. Wan S, Pestka S, Jubin RG et al (2012) Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS One 7:e32542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Department of Neurosurgery (MUSC) and also by the South Carolina Clinical and Translational Research (SCTR) Institute, with an academic home at the Medical University of South Carolina, NIH/NCATS Grant Number UL1TR001450. The final systematic editing for language and style, together with preparation for manuscript, was made by Alyssa Pierce.

Author contributions

Conception and Design: Arabinda Das and Ramin Eskandari. Acquisition of data: Arabinda Das and Daniel McDonald. Interpretation of data: Arabinda Das, Stephen Lowe, Amy-Lee Bredlau, and Ramin Eskandari. Manuscript preparation and revision: Arabinda Das, Stephen Lowe, Amy-Lee Bredlau, Daniel McDonald, Kenneth Vanek, Sunil J. Patel, Samuel Cheshier, and Ramin Eskandari.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arabinda Das or Ramin Eskandari.

Ethics declarations

Conflict of interest

Amy-Lee Bredlau is a consultant for Borvo-Lennus Pharmaceuticals Inc.and Azevan Pharmaceuticals, Inc. No other author has a conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., McDonald, D., Lowe, S. et al. Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity. Childs Nerv Syst 33, 429–436 (2017). https://doi.org/10.1007/s00381-016-3305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3305-x

Keywords

Navigation