Skip to main content

Advertisement

Log in

Phase I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This phase I study was conducted to evaluate the safety and pharmacokinetics of YM155, a potent, selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer (NSCLC).

Methods

The pimary objectives were to evaluate the safety and tolerability of YM155 at escalating doses (3.6, 4.8, 6.0, and 8.0 mg/m2/days) administered every 3 weeks as continuous intravenous infusion over 168 h in combination with erlotinib at a fixed dose (150 mg, once a day). Secondary objectives were to assess the pharmacokinetics of YM155, antitumor activity, and the relationship between biomarkers and efficacy. The changes in survivin expression in biopsied tumor pre- and post-YM155 administration and serum cytokine levels were also analyzed.

Results

Fifteen patients were treated. The most common YM155-related adverse event was the presence of urine microalbumin, whereas grades 3/4 toxicities were rare. One patient who received 4.8  mg/m2/days YM155 developed a dose-limiting grade 2 serum creatinine elevation. YM155 exposure in plasma showed dose proportionality across all dose ranges tested. No pharmacokinetic interaction occurred between YM155 and erlotinib. The serum cytokines IL-8, G-CSF, and MIP-1b showed decreasing trends in patients who achieved progression-free survival of ≥ 12 weeks. Durable stable disease for ≥ 24 weeks was observed in two patients.

Conclusion

Up to 8.0 mg/m2/days YM155 administered every 3 weeks in combination with erlotinib exhibited a favorable safety profile and moderate clinical efficacy. These results suggest that inhibiting survivin is a potential therapeutic strategy for select patients with EGFR TKI refractory NSCLC.

Trial registration

UMIN000031912 at UMIN Clinical Trials Registry (UMIN-CTR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Cancer Society. What Is Non-Small Cell Lung Cancer? https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html. Accessed 6 June 2018

  2. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  3. Paez JG, Jänne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  4. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967

    Article  CAS  PubMed  Google Scholar 

  6. Faber AC, Corcoran RB, Ebi H et al (2011) BIM expression in treatment-naïve cancers predicts responsiveness to kinase inhibitors. Cancer Discov 1:352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greulich H, Chen TH, Feng W et al (2005) Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2:e313

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  9. Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  PubMed  Google Scholar 

  10. Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334

    Article  CAS  PubMed  Google Scholar 

  11. Mok TS, Wu Y-L, Ahn M-J et al (2017) Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 376:629–640

    Article  CAS  PubMed  Google Scholar 

  12. Coumar MS, Tsai FY, Kanwar JR et al (2013) Treat cancers by targeting survivin: Just a dream or future reality? Cancer Treat Rev 39:802–811

    Article  CAS  PubMed  Google Scholar 

  13. Bolton MA, Lan W, Powers SE et al (2002) Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell 13:3064–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelly AE, Ghenoiu C, Xue JZ et al (2010) Survivin reads phosphorylated histone H3 threonine to activate the mitotic kinase aurora B. Science 330:235–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lens SM, Wolthuis RM, Klompmaker R et al (2003) Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 22:2934–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Croci DO, Cogno IS, Vittar NB et al (2008) Silencing survivin gene expression promotes apoptosis of human breast cancer cells through a caspase independent pathway. J Cell Biochem 105:381–390

    Article  CAS  PubMed  Google Scholar 

  17. Cheung CH, Chen HH, Kuo CC et al (2009) Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers. Mol Cancer 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garg H, Suri P, Gupta JC et al (2016) Survivin: a unique target for tumor therapy. Cancer Cell Int 16:49

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nakamura H, Taguchi A, Kawana K et al (2018) Therapeutic significance of targeting survivin in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget 9:13451–13461

    Article  PubMed  PubMed Central  Google Scholar 

  20. Okamoto K, Okamoto I, Okamoto W et al (2010) Role of survivin in EGFR inhibitor-induced apoptosis in non-small cell lung cancers positive for EGFR mutations. Cancer Res 70:10402–10410

    Article  CAS  PubMed  Google Scholar 

  21. Okamoto K, Okamoto I, Hatashita E et al (2012) Overcoming erlotinib resistance in EGFR mutation-positive non-small cell lung cancer cells by targeting survivin. Mol Cancer Ther 11:204–213

    Article  CAS  PubMed  Google Scholar 

  22. Nakahara T, Kita A, Yamanaka K et al (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67:8014–8021

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura N, Yamauchi T, Hiramoto M et al (2012) Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin. Mol Cell Proteom 11(M111):013243

    Google Scholar 

  24. Yamauchi T, Nakamura N, Hiramoto M et al (2012) Sepantronium bromide (YM155) induces disruption of the ILF3/p54(nrb) complex, which is required for survivin expression. Biochem Biophys Res Commun 425:711–716

    Article  CAS  PubMed  Google Scholar 

  25. Tolcher AW, Mita A, Lewis LD et al (2008) Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol 26:5198–5203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satoh T, Okamoto I, Miyazaki M et al (2009) Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res 15:3872–3880

    Article  CAS  PubMed  Google Scholar 

  27. Giaccone G, Zatloukal P, Roubec J et al (2009) Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol 27:4481–4486

    Article  CAS  PubMed  Google Scholar 

  28. Lewis KD, Samlowski W, Ward J et al (2011) A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest New Drugs 29:161–166

    Article  CAS  PubMed  Google Scholar 

  29. Tolcher AW, Quinn DI, Ferrari A et al (2012) A phase II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer. Ann Oncol 23:968–973

    Article  CAS  PubMed  Google Scholar 

  30. Cheson BD, Bartlett NL, Vose JM et al (2012) A phase II study of the survivin suppressant YM155 in patients with refractory diffuse large B-cell lymphoma. Cancer 118:3128–3134

    Article  CAS  PubMed  Google Scholar 

  31. Aoyama Y, Kaibara A, Takada A et al (2013) Population pharmacokinetic modeling of sepantronium bromide (YM155), a small molecule survivin suppressant, in patients with non-small cell lung cancer, hormone refractory prostate cancer, or unresectable stage III or IV melanoma. Invest New Drugs 31:443–451

    Article  CAS  PubMed  Google Scholar 

  32. Kelly RJ, Thomas A, Rajan A et al (2013) A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 24:2601–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clemens MR, Gladkov OA, Gartner E et al (2015) Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat 149:171–179

    Article  CAS  PubMed  Google Scholar 

  34. Kudchadkar R, Ernst S, Chmielowski B et al (2015) A phase 2, multicenter, open-label study of sepantronium bromide (YM155) plus docetaxel in patients with stage III (unresectable) or stage IV melanoma. Cancer Med 4:643–650

    Article  CAS  PubMed  Google Scholar 

  35. Papadopoulos KP, Lopez-Jimenez J, Smith SE et al (2016) A multicenter phase II study of sepantronium bromide (YM155) plus rituximab in patients with relapsed aggressive B-cell Non-Hodgkin lymphoma. Leuk Lymphoma 57:1848–1855

    Article  CAS  PubMed  Google Scholar 

  36. Stathopoulos GP, Armakolas A, Tranga T et al (2011) Granulocyte colony-stimulating factor expression as a prognostic biomarker in non-small cell lung cancer. Oncol Rep 25(6):1541–1544

    CAS  PubMed  Google Scholar 

  37. Li L, Liu YD, Zhan YT et al (2018) High levels of CCL2 or CCL4 in the tumor microenvironment predict unfavorable survival in lung adenocarcinoma. Thorac Cancer 9(7):775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanmamed MF, Carranza-Rua O, Alfaro C et al (2014) Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin Cancer Res 20(22):5697–5707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients, their families, all other investigators, and all investigational site members involved in this study. The authors were responsible for all content and editorial decisions, and received no honoraria related to the development of this publication.

Funding

This investigator-initiated clinical trial was funded by grants-in-aid for scientific research from the Ministry of Health, Labor and Welfare, Japan (2012–2015). The new investigational drug (YM155) was provided by Astellas Pharma (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Shimizu.

Ethics declarations

Conflict of interest

Toshio Shimizu reports research grants from Novartis, Eli Lilly, Daiichi-Sankyo, Bristol-Myers Squibb, Eisai, AbbVie, AstraZeneca, Takeda Oncology, Incyte, Chordia Therapeutics, 3D-Medicine, Symbio Pharmaceuticals, PharmaMar, Five Prime, and Astellas Pharma outside the submitted work; and reports advisor role at Takeda Pharmaceutical Co., Ltd. Kazuhiko Nakagawa reports research grants from MSD KK, AstraZeneca, ICON Japan, Astellas, Takeda, Novartis, Eli Lilly, Quintiles Inc., Bristol Myers Squibb, CMIC Shift Zero K.K., Taiho Pharmaceutical, Eisai, Parexel International Corp., Nippon Boehringer Ingelheim, Ono Pharmaceutical, Kissei Pharmaceutical, IQVIA, Pfizer, A2 Healthcare Corp, Kyowa Hakko Kirin, EPS Corporation, Abbvie, Chugai Pharmaceutical, Daiichi-Sankyo, SymBio Pharmaceuticals, Bayer, and Merck Serono outside the submitted work; and reports consulting or advisor role at Astellas Pharma Inc. and Takeda Pharmaceutical Co., Ltd. Isamu Okamoto reports grants from Boehringer Ingelheim, during the study; grants and personal fees from AstraZeneca, Taiho Pharmaceutical, Boehringer Ingelheim, Ono Pharmaceutical, MSD Oncology, Lilly, Bristol-Myers Squibb, and Chugai Pharma; grants from Astellas Pharma, Novartis, and AbbVie; personal fees from Pfizer, outside the submitted work. Masayuki Takeda received honoraria from Novartis Pharma, Chugai Pharma, ONO Pharmaceutical, and Boehringer Ingelheim. Maiko Morishita is an employee of Astellas Pharma. The remaining authors have no potential conflicts of interest to report.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, T., Nishio, K., Sakai, K. et al. Phase I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer. Cancer Chemother Pharmacol 86, 211–219 (2020). https://doi.org/10.1007/s00280-020-04112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04112-1

Keywords

Navigation