Skip to main content

Advertisement

Log in

Increased anti-tumour effects of doxorubicin and zoledronic acid in prostate cancer cells in vitro: supporting the benefits of combination therapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Combination treatment using the chemotherapy drug doxorubicin and the anti-resorptive agent zoledronic acid has shown to be very effective in inducing apoptosis in breast cancer cells, and also to eradicate breast tumour growth in vivo. Here, we investigated whether apoptotic cell death is increased when zoledronic acid and doxorubicin are given in sequence or in combination in prostate cancer cells in vitro.

Methods

PC3, DU145 and LNCaP prostate cancer cells were treated with zoledronic acid or doxorubicin alone, in sequence or in combination, and apoptosis was measured by evaluation of nuclear morphology following staining with Hoechst and PI. The involvement of the mevalonate pathway in the induction of apoptosis was assessed through the addition of the mevalonate pathway intermediate geranylgeraniol.

Results

Both agents induced PC3 cell death, with 5 μM zoledronic acid inducing 1.73% apoptosis and 50 nM doxorubicin 3.60% apoptosis following 24 h of exposure. In contrast, sequential exposure (doxorubicin followed by zoledronic acid) caused 8.87% apoptosis. Doxorubicin followed by zoledronic acid induced 4.77% apoptosis in LNCaP cells, compared to 1.53% caused by zol alone, 2.23% by dox alone and 2.5% following the reverse sequence (P < 0.001 in all cases). In DU145 cells doxorubicin followed by zoledronic acid induced 5.73% apoptosis, compared to 1.8% following zol alone, 2.93% by dox alone, and 3.20% following the reverse sequence (P < 0.001 in all cases).

Conclusions

This is the first detailed study to show that an increased anti-tumour effect is generated when doxorubicin and zoledronic acid are given in sequence in both hormone-sensitive and insensitive prostate cancer cells in vitro. Our results suggest that combined treatment with these agents is superior to single agent therapy, and should be explored in a tumour model of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BPs:

Bisphosphonates

FPP:

Farnesyl diphosphate

GGPP:

Geranylgeranyl diphosphate

N-BPs:

Nitrogen-containing bisphosphonates

References

  1. Ye L, Kynaston HG, Jiang WG (2007) Bone metastasis in prostate cancer: molecular and cellular mechanisms. Int J Mol Med 20(1):103–111

    PubMed  CAS  Google Scholar 

  2. Saad F, Karakiewicz P, Perrotte P (2005) The role of bisphosphonates in hormone-refractory prostate cancer. World J Urol 23(1):14–18

    Article  PubMed  CAS  Google Scholar 

  3. Ottewell PD, Mönkkönen H, Jones M, Lefley DV, Coleman RE, Holen I (2008) Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst 100:1167–1178

    Article  PubMed  CAS  Google Scholar 

  4. Ottewell PD, Deux B, Mönkkönen H, Coleman RE, Clezardin P, Holen I (2008) Differential effect of doxorubicin and zoledronic acid on intraosseous versus extraosseous breast tumor growth in vivo. Clin Cancer Res 14:4658–4666

    Article  PubMed  CAS  Google Scholar 

  5. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9(32):2643–2658

    Article  PubMed  CAS  Google Scholar 

  6. Van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-bisphosphonates. Biochem Biophys Res Commun 264:108–111

    Article  PubMed  Google Scholar 

  7. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589

    Article  PubMed  CAS  Google Scholar 

  8. Stresing V, Daubiné F, Benzaid I, Mönkkönen H, Clézardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257(1):16–35

    Google Scholar 

  9. Senartne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82(8):1459–1468

    Google Scholar 

  10. Coxon JP, Oades GM, Kirby RS, Colston KW (2004) Zoledronic acid induces apoptosis and inhibits adhesion to mineralised matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 94:164–170

    Article  PubMed  CAS  Google Scholar 

  11. Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 98:665–672

    Article  PubMed  CAS  Google Scholar 

  12. van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98(3):698–705

    Article  PubMed  Google Scholar 

  13. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaisse JM, Clezardin P (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60:2949–2954

    PubMed  CAS  Google Scholar 

  14. Virtanen SS, Vaananen HK, Harkonen PL, Lakkakorpi PT (2002) Alendronate inhibits invasion of PC3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62:2708–2714

    PubMed  CAS  Google Scholar 

  15. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, Clezardin P (2002) Bisphophonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62:6238–6544

    Google Scholar 

  16. Croucher PI, De Hendrik R, Perry MJ, Hijzen A, Shipman CM, Lippitt J, Green J, van Marck E, van Camp B (2003) Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumour burden and angiogenesis, and increased survival. J Bone Miner Res 18(3):482–492

    Article  PubMed  CAS  Google Scholar 

  17. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9 expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  18. Green JR (2004) Bisphosphonates: preclinical review. Oncologist 9(Suppl 4):3–13

    Article  PubMed  CAS  Google Scholar 

  19. Santini D, Caraglia M, Vincenzi B, Holen I, Scarpa S, Budillon A, Tonini G (2006) Mechanisms of disease: preclinical reports of antineoplastic synergistic action of bisphosphonates. Nat Clin Pract Oncol 3(6):325–338

    Article  PubMed  CAS  Google Scholar 

  20. Neville-Webbe HL, Rostami-Hodjegan A, Evans CA, Coleman RE, Holen I (2005) Sequence and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int J Cancer 113:364–371

    Article  PubMed  CAS  Google Scholar 

  21. Ullen A, Lennartsson L, Harmenberg U, Hjelm-Eriksson M, Kalkner KM, Lennernas B (2005) Additive/synergistic anti-tumoral effects on prostate cancer cells in vitro following treatment with a combination of docetaxel and zoledronic acid. Acta Oncol 44(6):644–650

    Article  PubMed  CAS  Google Scholar 

  22. Tassone P, Forciniti S, Galea E, Morrone G, Turco MC, Martinelli V, Venuta S (2000) Growth inhibition and synergistic induction of apoptosis by zoledronate and dexamethasone in human myeloma cell lines. Leukaemia 14:841–844

    Article  CAS  Google Scholar 

  23. Brubaker KD, Brown LG, Vessella RL, Corey E (2006) Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment. BMC Cancer 6:15

    Article  PubMed  CAS  Google Scholar 

  24. Kroger N, Achterrath W, Hegewisch-Becker S, Mross K, Zander AR (1999) Current options in treatment of anthracycline-resistant breast cancer. Cancer Treat Rev 25:279–291

    Article  PubMed  CAS  Google Scholar 

  25. Fornari FA Jr, Jarvis DW, Grant S, Orr MS, Randolph JK, White FK, Gewirtz DA (1996) Growth arrest and non-apoptotic cell death associated with the suppression of c-myc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol 51(7):931–940

    Article  PubMed  CAS  Google Scholar 

  26. Potter AJ, Gollahon KA, Palanca BJ, Harbert MJ, Choi YM, Moskovitz AH, Potter JD, Rabinovitch PS (2002) Flow cytometric analysis of the cell cycle phase specificity of DNA damage induced by radiation, hydrogen peroxide and doxorubicin. Carcinogenesis 23:389–401

    Article  PubMed  CAS  Google Scholar 

  27. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466–468

    Article  PubMed  CAS  Google Scholar 

  28. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumour cells. Mol Pharmacol 45:649–656

    PubMed  CAS  Google Scholar 

  29. Fornari FA Jr, Jarvis WD, Grant S, Orr MS, Randolph JK, White FK, Mumaw VR, Lovings ET, Freeman RH, Gewirtz DA (1994) Induction of differentiation and growth arrest associated with nascent (nonoligosomal) DNA fragmentation and reduced c-myc expression in MCF-7 human breast tumour cells after continuous exposure to a sublethal concentration of doxorubicin. Cell Growth Differ 5:723–733

    PubMed  CAS  Google Scholar 

  30. Goldenberg GJ, Wang H, Blair GW (1986) Resistance to adriamycin: relationship of cytotoxicity to drug uptake and DNA single-and double-strand breakage in cloned cell lines of adriamycin-sensitive and-resistant P388 leukaemia. Cancer Res 46:2978–2983

    PubMed  CAS  Google Scholar 

  31. Petrioli R, Fiaschi AI, Francini E, Pascucci A, Francini G (2008) The role of doxorubicin and epirubicin in the treatment of patients with metastatic hormone-refractory prostate cancer. Cancer Treat Rev 34(8):710–718

    Article  PubMed  CAS  Google Scholar 

  32. Mike S, Harrison C, Coles B, Staffurth J, Wilt TJ, Mason MD (2006) Chemotherapy for hormone-refractory prostate cancer. Cochrane Database Syst Rev 18(4):CD005247

    Google Scholar 

  33. Oades GM, Senaratne SG, Clarke IA, Kirby RS, Colston KW (2003) Nitrogen containing bisphosphonates induce apoptosis and inhibit the mevalonate pathway, impairing RAS membrane localization in prostate cancer cells. The J Urol 170:246–252

    Article  CAS  Google Scholar 

  34. Brown JE, Cook RJ, Major P et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69

    Article  PubMed  CAS  Google Scholar 

  35. Thudi NK, Martin CK, Nadella MV, Fernandez SA, Werbeck JL, Pinzone JJ, Rosol TJ (2008) Zoledronic acid decreased osteolysis but not bone metastasis in a nude mouse model of canine prostate cancer with mixed bone lesions. Prostate 68(10):1116–1125

    Article  PubMed  CAS  Google Scholar 

  36. Corey E, Brown LG, Quinn JE, Poot M, Roudier MP, Higano CS, Vessella RL (2003) Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res 9(1):295–306

    PubMed  CAS  Google Scholar 

  37. Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20

    PubMed  Google Scholar 

  38. Clines GA, Guise TA (2008) Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med 6(10):e7

    Article  Google Scholar 

  39. Sun-Jin K, Hisanori U, Sertac Y, Junqin H, Robert RL, Paul M, Dominic F, Isaiah J (2005) Fidler modulation of bone microenvironment with zoledronate enhances the therapeutic effects of STI571 and paclitaxel against experimental bone metastasis of human prostate cancer. Cancer Res 65:3707–3715

    Article  Google Scholar 

  40. van Beek ER, Lowik CW, van Wijngaarden J, Ebetino FH, Papapoulos SE (2008) Synergistic effect of bisphosphonate and docetaxel on the growth of bone metastasis in an animal model of established metastatic bone disease. Breast Cancer Res Treat [Epub ahead of print]

  41. Jagdev SP, Coleman RE, Shipman CM, Rostami HA, Croucher PI (2001) The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with Paclitaxel. Br J Cancer 84(8):1126–1134

    Article  PubMed  CAS  Google Scholar 

  42. Pandha H, Birchall L, Meyer B, Wilson N, Relph K, Anderson C, Harrington K (2006) Antitumor effects of aminobisphosphonates on renal cell carcinoma cell lines. J Urol 176:2255–2261

    Article  PubMed  CAS  Google Scholar 

  43. Matsumoto S, Kimura S, Segawa H, Kuroda J, Yuasa T, Sato K, Nogawa M, Tanaka F, Maekawa T, Wada H (2005) Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer 47:31–39

    Article  PubMed  Google Scholar 

  44. Budman DR, Calabro A (2006) Zoledronic acid (Zometa) enhances the cytotoxic effect of gemcitabine and fluvastatin: in vitro isobologram studies with conventional and nonconventional cytotoxic agents. Oncology 70(2):147–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.D. Clyburn was sponsored by bursary by Yorkshire Cancer Research, UK. P. Reid is funded by a grant from Weston Park Hospital Cancer Charity, Sheffield, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingunn Holen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clyburn, R.D., Reid, P., Evans, C.A. et al. Increased anti-tumour effects of doxorubicin and zoledronic acid in prostate cancer cells in vitro: supporting the benefits of combination therapy. Cancer Chemother Pharmacol 65, 969–978 (2010). https://doi.org/10.1007/s00280-009-1106-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1106-6

Keywords

Navigation