Skip to main content

Advertisement

Log in

Heat shock protein 90 inhibition abrogates hepatocellular cancer growth through cdc2-mediated G2/M cell cycle arrest and apoptosis

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

17-(demethoxy), 17-allylamino geldanamycin (17-AAG) suppresses growth in some cancers by inhibiting Heat shock protein 90 (Hsp90). We examined the effects of 17-AAG-mediated Hsp90 inhibition on human hepatocellular carcinoma (HCC) growth in vitro and in vivo.

Methods

Human HCC cell lines, Hep3B and HuH7, were exposed to 17-AAG and cell viabilities and apoptosis were determined. Cell cycle profiles were analyzed and the G2/M cell cycle checkpoint proteins cdc2 and cyclin B1 were examined. Studies were performed to determine whether 17-AAG-mediated cdc2 decrease was due to altered gene expression, transcription, or protein degradation. The effects of 17-AAG on Hep3B and HuH7 xenograft growth in athymic nude mice were also examined.

Results

Hep3B and HuH7 treated with 17-AAG versus untreated controls showed decreased cell viability and increased apoptosis. Cells treated with 17-AAG also showed an increased fraction in G2/M phase and an associated decrease in cdc2 through protein degradation rather than through other mechanisms. Hsp90 inhibition by 17-AAG also decreased HCC xenograft growth in association with decreased cdc2 expression.

Conclusions

17-AAG-mediated inhibition of Hsp90 abrogates human HCC cell growth in vitro and in vivo through cdc2 decrease, which in turn induces G2/M cell cycle arrest and apoptosis. Hsp90 is a mediator of HCC growth and survival and its inhibition may serve as a potential treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosch FX, Ribes J, Diaz M et al (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16

    Article  PubMed  Google Scholar 

  2. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  PubMed  CAS  Google Scholar 

  3. Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257:14949–14959

    PubMed  CAS  Google Scholar 

  4. Luk JM, Lam CT, Siu AF et al (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6:1049–1057

    Article  PubMed  CAS  Google Scholar 

  5. Calvisi DF, Pascale RM, Feo F (2007) Dissection of signal transduction pathways as a tool for the development of targeted therapies of hepatocellular carcinoma. Rev Recent Clin Trials 2:217–236

    Article  PubMed  CAS  Google Scholar 

  6. Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  PubMed  CAS  Google Scholar 

  7. Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217:420–434

    PubMed  CAS  Google Scholar 

  8. Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030

    Article  PubMed  CAS  Google Scholar 

  9. Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041–9047

    Article  PubMed  CAS  Google Scholar 

  10. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Morales P, Carrasco-Garcia E, Ruiz-Rico P et al (2007) Inhibition of Hsp90 function by ansamycins causes downregulation of cdc2 and cdc25c and G(2)/M arrest in glioblastoma cell lines. Oncogene 26(51):7185–7193

    Article  PubMed  CAS  Google Scholar 

  12. Senju M, Sueoka N, Sato A et al (2006) Hsp90 inhibitors cause G2/M arrest associated with the reduction of Cdc25C and Cdc2 in lung cancer cell lines. J Cancer Res Clin Oncol 132:150–158

    Article  PubMed  CAS  Google Scholar 

  13. Beliakoff J, Whitesell L (2004) Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 15:651–662

    Article  PubMed  CAS  Google Scholar 

  14. Lim SO, Park SG, Yoo JH et al (2005) Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11:2072–2079

    PubMed  CAS  Google Scholar 

  15. Pascale RM, Simile MM, Calvisi DF et al (2005) Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 42:1310–1319

    Article  PubMed  CAS  Google Scholar 

  16. Whitesell L, Mimnaugh EG, De Costa B et al (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  PubMed  CAS  Google Scholar 

  17. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  PubMed  CAS  Google Scholar 

  18. Clarke PA, Hostein I, Banerji U et al (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125–4133

    Article  PubMed  CAS  Google Scholar 

  19. Chiosis G, Huezo H, Rosen N et al (2003) 17AAG: low target binding affinity and potent cell activity––finding an explanation. Mol Cancer Ther 2:123–129

    PubMed  CAS  Google Scholar 

  20. Workman P (2004) Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10:47–51

    Article  PubMed  CAS  Google Scholar 

  21. Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79:1889–1892

    Article  PubMed  CAS  Google Scholar 

  22. Meijer L, Borgne A, Mulner O et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  PubMed  CAS  Google Scholar 

  23. Gomez-Flores R, Gupta S, Tamez-Guerra R et al (1995) Determination of MICs for Mycobacterium avium-M. Intracellulare complex in liquid medium by a colorimetric method. J Clin Microbiol 33:1842–1846

    PubMed  CAS  Google Scholar 

  24. Le Gac G, Esteve PO, Ferec C et al (2006) DNA damage-induced down-regulation of human Cdc25C and Cdc2 is mediated by cooperation between p53 and maintenance DNA (cytosine–5) methyltransferase 1. J Biol Chem 281:24161–24170

    Article  PubMed  CAS  Google Scholar 

  25. Jurchott K, Bergmann S, Stein U et al (2003) YB–1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J Biol Chem 278:27988–27996

    Article  PubMed  CAS  Google Scholar 

  26. Fujii T, Nomoto S, Koshikawa K et al (2006) Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. Hepatology 43:1267–1275

    Article  PubMed  CAS  Google Scholar 

  27. Yang J, Yang JM, Iannone M et al (2001) Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res 61:4010–4016

    PubMed  CAS  Google Scholar 

  28. Banerji U, Walton M, Raynaud F et al (2005) Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res 11:7023–7032

    Article  PubMed  CAS  Google Scholar 

  29. Yin X, Zhang H, Burrows F et al (2005) Potent activity of a novel dimeric heat shock protein 90 inhibitor against head and neck squamous cell carcinoma in vitro and in vivo. Clin Cancer Res 11:3889–3896

    Article  PubMed  CAS  Google Scholar 

  30. Gannon JV, Nebreda A, Goodger NM et al (1998) A measure of the mitotic index: studies of the abundance and half-life of p34cdc2 in cultured cells and normal and neoplastic tissues. Genes Cells 3:17–27

    Article  PubMed  CAS  Google Scholar 

  31. Burger AM, Fiebig HH, Stinson SF et al (2004) 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs 15:377–387

    Article  PubMed  CAS  Google Scholar 

  32. Hostein I, Robertson D, DiStefano F et al (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61:4003–4009

    PubMed  CAS  Google Scholar 

  33. Giovannetti E, Backus HH, Wouters D et al (2007) Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels. Br J Cancer 96:769–775

    Article  PubMed  CAS  Google Scholar 

  34. Bossi G, Sacchi A (2007) Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck 29:272–284

    Article  PubMed  Google Scholar 

  35. Kelland LR, Sharp SY, Rogers PM et al (1999) DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst 91:1940–1949

    Article  PubMed  CAS  Google Scholar 

  36. de Carcer G (2004) Heat shock protein 90 regulates the metaphase-anaphase transition in a polo-like kinase-dependent manner. Cancer Res 64:5106–5112

    Article  PubMed  Google Scholar 

  37. Georgakis GV, Li Y, Rassidakis GZ et al (2006) Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin’s lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 12:584–590

    Article  PubMed  CAS  Google Scholar 

  38. Wolf F, Sigl R, Geley S (2007) ‘… The end of the beginning’: cdk1 thresholds and exit from mitosis. Cell Cycle 6:1408–1411

    PubMed  CAS  Google Scholar 

  39. Castedo M, Perfettini JL, Roumier T et al (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9:1287–1293

    Article  PubMed  CAS  Google Scholar 

  40. Okamoto J, Mikami I, Tominaga Y et al (2008) Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J Thorac Oncol 3:1089–1095

    Article  PubMed  Google Scholar 

  41. Nomura M, Nomura N, Newcomb EW et al (2004) Geldanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells. J Cell Physiol 201:374–384

    Article  PubMed  CAS  Google Scholar 

  42. Morla AO, Draetta G, Beach D et al (1989) Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58:193–203

    Article  PubMed  CAS  Google Scholar 

  43. Welch PJ, Wang JY (1992) Coordinated synthesis and degradation of cdc2 in the mammalian cell cycle. Proc Natl Acad Sci USA 89:3093–3097

    Article  PubMed  CAS  Google Scholar 

  44. Rubinsztein DC, Gestwicki JE, Murphy LO et al (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    Article  PubMed  CAS  Google Scholar 

  45. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  46. Nomura N, Nomura M, Newcomb EW et al (2007) Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem Pharmacol 73:1528–1536

    Article  PubMed  CAS  Google Scholar 

  47. Bagatell R, Khan O, Paine-Murrieta G et al (2001) Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin Cancer Res 7:2076–2084

    PubMed  CAS  Google Scholar 

  48. Grem JL, Morrison G, Guo XD et al (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23:1885–1893

    Article  PubMed  CAS  Google Scholar 

  49. Banerji U, O’Donnell A, Scurr M et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  PubMed  CAS  Google Scholar 

  50. Ronnen EA, Kondagunta GV, Ishill N et al (2006) A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs 24:543–546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin D. Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 (TIFF 8233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, G., Behrns, K.E., Kim, JS. et al. Heat shock protein 90 inhibition abrogates hepatocellular cancer growth through cdc2-mediated G2/M cell cycle arrest and apoptosis. Cancer Chemother Pharmacol 64, 433–443 (2009). https://doi.org/10.1007/s00280-008-0888-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0888-2

Keywords

Navigation