Skip to main content

Advertisement

Log in

Potentiation of arsenic trioxide cytotoxicity by Parthenolide and buthionine sulfoximine in murine and human leukemic cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To possibly increase the in vitro cytotoxic activity of arsenic trioxide (ATO) by combining it with Parthenolide (PRT), a known NF-κB inhibitor and buthionine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase.

Methods

Several cell lines representing various hematological malignancies were treated in vitro with the study drugs alone or in combinations. Flow cytometry was used to assess cell death rates and reative oxygen species production. Glutathione and ATP levels were determinded using a photometric and a luminometric assay, respectively. Cell death was characterised by fluorescence microscopy and DNA fragmentation analysis.

Results

PRT increased cytotoxicity of ATO in seven out of eight cell lines. Addition of buthionine sulfoximine (BSO) further potentiated cytotoxicity of the combined treatment. When combined with PRT and BSO, clinically achievable concentrations of ATO (2.5 μM) induced cytotoxicity rates of 80–98% after 24 h. Importantly, lymphocytes from healthy donors were largely unaffected by these treatment modalities, also after growth stimulation in cell culture. N-acetylcysteine inhibited the cytotoxic effects of the triple combination. Treatment of leukemic cells with ATO, PRT and BSO rapidly depleted cells from glutathione, induced oxidative stress and decreased intracellular ATP levels. Cell death showed characteristics of necrosis presumably as a result of ATP loss.

Conclusion

Based on the observed selectivity towards malignant cells this combination may offer a therapeutic option applicable to different kinds of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal BB (2004) Nuclear factor-kappaB, the enemy within. Cancer Cell 6:203–208

    Article  PubMed  CAS  Google Scholar 

  2. Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 101:4578–4583

    Article  PubMed  CAS  Google Scholar 

  3. D’Alessio M, Cerella C, De Nicola M, Bergamaschi A, Magrini A, Gualandi G, Alfonsi AM, Ghibelli L (2003) Apoptotic GSH extrusion is associated with free radical generation. Ann NY Acad Sci 1010:449–452

    Article  PubMed  CAS  Google Scholar 

  4. Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277

    PubMed  CAS  Google Scholar 

  5. Davison K, Côté S, Mader S, Miller WH (2003) Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia 17:931–940

    Article  PubMed  CAS  Google Scholar 

  6. Eguchi Y, Srinivasan A, Tomaselli KJ, Shimizu S, Tsujimoto Y (1999) ATP-dependent steps in apoptotic signal transduction. Cancer Res 59:2174–2181

    PubMed  CAS  Google Scholar 

  7. Felix K, Manna SK, Wise K, Barr J, Ramesh GT (2005) Low level of arsenite activates nuclear factor-kappaB and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Tox 19:67–77

    Article  CAS  Google Scholar 

  8. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2005) Antiapoptotic response to induced GSH depletion: involvement of heat shock proteins and NF-kappaB activation. Antioxid Redox Signal 7:446–455

    Article  PubMed  CAS  Google Scholar 

  9. Ghibelli L, Coppola S, Rotilio G, Lafavia E, Maresca V, Ciriolo MR (1995) Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Commun 216:313–320

    Article  PubMed  CAS  Google Scholar 

  10. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218:314–319

    Article  PubMed  CAS  Google Scholar 

  11. Gupta S, Yel L, Kim D, Kim C, Chiplunkar S, Gollapudi S (2003) Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther 2:711–719

    PubMed  CAS  Google Scholar 

  12. Han SS, Kim K, Hahm ER, Park CH, Kimler BF, Lee SJ, Kim WS, Jung CW, Park K, Kim J, Yoon SS, Lee JH, Park S (2005) Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J Cell Biochem 94:695–707

    Article  PubMed  CAS  Google Scholar 

  13. Hu XM, Hirano T, Oka K (2003) Arsenic trioxide induces apoptosis in cells of MOLT-4 and its daunorubicin-resistant cell line via depletion of intracellular glutathione, disruption of mitochondrial membrane potential and activation of caspase-3. Cancer Chemother Pharmacol 52:47–58

    Article  PubMed  CAS  Google Scholar 

  14. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102–2111

    PubMed  CAS  Google Scholar 

  15. Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M (2000) Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 275:36062–36066

    Article  PubMed  CAS  Google Scholar 

  16. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  17. Kerbauy DM, Lesnikov V, Abbasi N, Seal S, Scott B, Deeg HJ (2005) NF-kB and FLIP in arsenic trioxide (ATO)–induced apoptosis in myelodysplastic syndromes (MDSs). Blood 106:3917–3925

    Article  PubMed  CAS  Google Scholar 

  18. Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol 8:759–766

    Article  PubMed  CAS  Google Scholar 

  19. Lemarie A, Morzadec C, Merino D, Micheau O, Fardel O, Vernhet L (2006) Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation. J Pharmacol Exp Ther 316:304–314

    Article  PubMed  CAS  Google Scholar 

  20. Li M, Cai JF, Chiu JF (2002) Arsenic induces oxidative stress and activates stress gene expressions in cultured lung epithelial cells. J Cell Biochem 87:29–38

    Article  PubMed  CAS  Google Scholar 

  21. Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O, Kakizuka A (2004) Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Diff 11:737–746

    Article  CAS  Google Scholar 

  22. Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C, Bommert K, Dorken B (2003) Inhibition of NF-κB essentially contributes to arsenic-induced apoptosis. Blood 102:1028–1034

    Article  PubMed  CAS  Google Scholar 

  23. Nakshatri H, Rice SE, Bhat-Nakshatri P (2004) Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 23:7330–7344

    Article  PubMed  CAS  Google Scholar 

  24. Pelicano H, Martin DS, Xu R-H, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  PubMed  CAS  Google Scholar 

  25. Saito Y, Nishio K, Ogawa Y, Kimata J, Kinumi T, Yoshida Y, Noguchi N, Niki E (2006) Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res 40:619–630

    Article  PubMed  CAS  Google Scholar 

  26. Samikkannu T, Chen CH, Yih LH, Wang AS, Lin SY, Chen TC, Jan KY (2003) Reactive oxygen species are involved in arsenic trioxide inhibition of pyruvate dehydrogenase activity. Chem Res Toxicol 16:409–414

    Article  PubMed  CAS  Google Scholar 

  27. Seo T, Urasaki Y, Takemura H, Ueda T (2005) Arsenic trioxide circumvents multidrug resistance based on different mechanisms in human leukemia cell lines. Anticancer Res 25:991–998

    PubMed  CAS  Google Scholar 

  28. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360

    PubMed  CAS  Google Scholar 

  29. Steele AJ, Jones DT, Ganeshaguru K, Duke VM, Yogashangary BC, North JM, Lowdell MW, Kottaridis PD, Mehta AB, Prentice AG, Hoffbrand AV, Wickremasinghe RG (2006) The sesquiterpene lactone parthenolide induces selective apoptosis of B-chronic lymphocytic leukemia cells in vitro. Leukemia 20:1073–1079

    Article  PubMed  CAS  Google Scholar 

  30. Sukhanov S, Higashi Y, Shai SY, Itabe H, Ono K, Parthasarathy S, Delafontaine P (2006) Novel effect of oxidized low-density lipoprotein. Cellular ATP depletion via downregulation of Glyceraldehyde-3-Phosphate dehydrogenase. Circ Res 99:191–200

    Article  PubMed  CAS  Google Scholar 

  31. Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L, Cocco L, Martelli AM (2005) Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 202:623–634

    Article  PubMed  CAS  Google Scholar 

  32. Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P (2003) The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Diff 10:889–898

    Article  CAS  Google Scholar 

  33. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S (2004) NF-kappaB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18:11–17

    Article  PubMed  CAS  Google Scholar 

  34. Verstovsek S, Giles F, Quinta’s-Cardama A, Perez N, Ravandi-Kashani F, Beran M, Freireich E, Kantarjian H (2006) Arsenic derivatives in hematologic malignancies, a role beyond acute promyelocytic leukemia? Hematol Oncol 24:181–188

    Article  PubMed  CAS  Google Scholar 

  35. Wang W, Adachi M, Kawamura R, Sakamoto H, Hayashi T, Ishida T, Imai K, Shinomura Y (2006) Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis 11:2225–2235

    Article  PubMed  CAS  Google Scholar 

  36. Woo SH, Park IC, Park MJ, An S, Lee HC, Jin HO, Park SA, Cho H, Lee SJ, Gwak HS, Hong YJ, Hong SI, Rhee CH (2004) Arsenic trioxide sensitizes CD95/Fas-induced apoptosis through ROS-mediated upregulation of CD95/Fas by NF-kappaB activation. Int J Cancer 112:596–606

    Article  PubMed  CAS  Google Scholar 

  37. Yang CH, Kuo ML, Chen JC, Chen YC (1999) Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. Br J Cancer 81:796–799

    Article  PubMed  CAS  Google Scholar 

  38. Yi J, Gao F, Shi G, Li H, Wang Z, Shi X, Tang X (2002) The inherent cellular level of reactive oxygen species: one of the mechanisms determining apoptotic susceptibility of leukemic cells to arsenic trioxide. Apoptosis 7:209–215

    Article  PubMed  CAS  Google Scholar 

  39. Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM (2004) Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 25:2191–2199

    Article  PubMed  CAS  Google Scholar 

  40. Zhang S, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153

    Article  PubMed  CAS  Google Scholar 

  41. Zhou L, Jing Y, Styblo M, Chen Z, Waxman S (2005) Glutathione-S-transferase pi inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood 105:1198–1203

    Article  PubMed  CAS  Google Scholar 

  42. Zhu XH, Shen YL, Jing YK, Cai X, Jia PM, Huang Y, Tang W, Shi GY, Sun YP, Dai J, Wang ZY, Chen SJ, Zhang TD, Waxman S, Chen Z, Chen GQ (1999) Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. J Natl Cancer Inst 91: 772–778

    Article  PubMed  CAS  Google Scholar 

  43. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance, immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nofer Institute of Occupational Medicine, Grant No. IMP1.7/2006, and by the Marie Curie Transfer of Knowledge Program “EpiTok” No. 6PR/2004/509829. We specifically thank Drs. Waldek Wagner and Jarosław Dastych for their great support at the flow cytometry laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Duechler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duechler, M., Stańczyk, M., Czyż, M. et al. Potentiation of arsenic trioxide cytotoxicity by Parthenolide and buthionine sulfoximine in murine and human leukemic cells. Cancer Chemother Pharmacol 61, 727–737 (2008). https://doi.org/10.1007/s00280-007-0527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0527-3

Keywords

Navigation