Skip to main content

Advertisement

Log in

Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is associated with reduced activity for SN-38 in Japanese patients with cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The phenotypic effects of UGT1A7 and UGT1A9 genetic polymorphisms on the in vivo pharmacokinetics of irinotecan were examined.

Methods

Eighty-four Japanese patients with cancer who received irinotecan-based chemotherapy were enrolled. Polymorphisms present in UGT1A7 (T to G transversion at −57 and UGT1A7*2 to *9), UGT1A9 (9 or 10 repeat of T at −118 [−118(T)9 or 10] and UGT1A9*2 to *5), and UGT1A1 (UGT1A1*6, UGT1A1*27, and UGT1A1*28) were analyzed for all patients. Pharmacokinetics of irinotecan were examined in 52 patients.

Results

The most frequent haplotype (haplotype I, 56.7%, 95% CI 53.1–60.4) consisted of polymorphisms related to normal catalytic or transcriptional activity [T at −57 and *1 of UGT1A7, −118(T)10 of UGT1A9, and UGT1A1*1]. The second most frequent haplotype (haplotype II, 15.0%, 95% CI 12.4–18.3) consisted of polymorphisms related to reduced catalytic or transcriptional activity [−57T > G and *3 of UGT1A7 and −118(T)9 of UGT1A9 linked to UGT1A1*6]. The AUCSN-38/AUCSN-38G ratios in three patients homozygous for haplotype II were significantly higher than those in 20 patients with I/I diplotype (P = 0.011). Neither of these patients had UGT1A1*28.

Conclusion

Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6, related to reduced catalytic and transcriptional activities of UGTs, is associated with the decreased glucuronosyltransferase activity for SN-38 in Japanese patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854

    PubMed  CAS  Google Scholar 

  2. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokoyama A, Saitoh S, Shimokata K, Hasegawa Y (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926

    PubMed  CAS  Google Scholar 

  3. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2:43–47

    Article  PubMed  CAS  Google Scholar 

  4. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramirez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  PubMed  CAS  Google Scholar 

  5. Ciotti M, Basu N, Brangi M, Owens IS (1999) Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem Biophys Res Commun 260:199–202

    Article  PubMed  CAS  Google Scholar 

  6. Gagne JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62:608–617

    Article  PubMed  CAS  Google Scholar 

  7. Hanioka N, Ozawa S, Jinno H, Ando M, Saito Y, Sawada J (2001) Human liver UDP-glucuronosyltransferase isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica 31:687–699

    Article  PubMed  CAS  Google Scholar 

  8. Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS (1992) A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 267:3257–3261

    PubMed  CAS  Google Scholar 

  9. Zheng Z, Park JY, Guillemette C, Schantz SP, Lazarus P (2001) Tobacco carcinogen-detoxifying enzyme UGT1A7 and its association with orolaryngeal cancer risk. J Natl Cancer Inst 93:1411–1418

    Article  PubMed  CAS  Google Scholar 

  10. Strassburg CP, Strassburg A, Nguyen N, Li Q, Manns MP, Tukey RH (1999) Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus. Biochem J 338:489–498

    Article  PubMed  CAS  Google Scholar 

  11. Strassburg CP, Nguyen N, Manns MP, Tukey RH (1998) Polymorphic expression of the UDP-glucuronosyltransferase UGT1A gene locus in human gastric epithelium. Mol Pharmacol 54:647–654

    PubMed  CAS  Google Scholar 

  12. Ockenga J, Vogel A, Teich N, Keim V, Manns MP, Strassburg CP (2003) UDP glucuronosyltransferase (UGT1A7) gene polymorphisms increase the risk of chronic pancreatitis and pancreatic cancer. Gastroenterology 124:1802–1808

    Article  PubMed  CAS  Google Scholar 

  13. Strassburg CP, Manns MP, Tukey RH (1998) Expression of the UDP-glucuronosyltransferase 1A locus in human colon. Identification and characterization of the novel extrahepatic UGT1A8. J Biol Chem 273:8719–8726

    Article  PubMed  CAS  Google Scholar 

  14. Villeneuve L, Girard H, Fortier LC, Gagne JF, Guillemette C (2003) Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 307:117–128

    Article  PubMed  CAS  Google Scholar 

  15. Jinno H, Saeki M, Saito Y, Tanaka-Kagawa T, Hanioka N, Sai K, Kaniwa N, Ando M, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Ozawa S, Sawada J (2003) Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 306:688–693

    Article  PubMed  CAS  Google Scholar 

  16. Lankisch TO, Vogel A, Eilermann S, Fiebeler A, Krone B, Barut A, Manns MP, Strassburg CP (2005) Identification and characterization of a functional TATA box polymorphism of the UDP glucuronosyltransferase 1A7 gene. Mol Pharmacol 67:1732–1739

    Article  PubMed  CAS  Google Scholar 

  17. Yamanaka H, Nakajima M, Katoh M, Hara Y, Tachibana O, Yamashita J, McLeod HL, Yokoi T (2004) A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics 14:329–332

    Article  PubMed  CAS  Google Scholar 

  18. Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T, Gold P, Rogatko A, Wang H, Blanchard RL (2005) UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 11:1226–1236

    PubMed  CAS  Google Scholar 

  19. Araki K, Fujita K, Ando Y, Nagashima F, Yamamoto W, Endo H, Miya T, Kodama K, Narabayashi Y, Sasaki Y (2006) Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Cancer Sci 97:1255–1259

    Article  PubMed  CAS  Google Scholar 

  20. Saeki M, Saito Y, Jinno H, Sai K, Ozawa S, Kurose K, Kaniwa N, Komamura K, Kotake T, Morishita H, Kamakura S, Kitakaze M, Tomoike H, Shirao K, Tamura T, Yamamoto N, Kunitoh H, Hamaguchi T, Yoshida T, Kubota K, Ohtsu A, Muto M, Minami H, Saijo N, Kamatani N, Sawada JI (2006) Haplotype structures of the UGT1A gene complex in a Japanese population. Pharmacogenomics J 6:63–75

    Article  PubMed  CAS  Google Scholar 

  21. Ando M, Ando Y, Sekido Y, Ando M, Shimokata K, Hasegawa Y (2002) Genetic polymorphisms of the UDP-glucuronosyltransferase 1A7 gene and irinotecan toxicity in Japanese cancer patients. Jpn J Cancer Res 93:591–597

    PubMed  CAS  Google Scholar 

  22. Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H, Hasegawa R, Kaniwa N, Sawada J, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kitamura Y, Kamatani N, Minami H, Ohtsu A, Shirao K, Yoshida T, Saijo N (2004) UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 75:501–515

    Article  PubMed  CAS  Google Scholar 

  23. Huang MJ, Yang SS, Lin MS, Huang CS (2005) Polymorphisms of uridine-diphosphoglucuronosyltransferase 1A7 gene in Taiwan Chinese. World J Gastroenterol 11:797–802

    PubMed  CAS  Google Scholar 

  24. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C (2004) Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14:501–515

    Article  PubMed  CAS  Google Scholar 

  25. Innocenti F, Liu W, Chen P, Desai AA, Das S, Ratain MJ (2005) Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogenet Genomics 15:295–301

    Article  PubMed  CAS  Google Scholar 

  26. Paoluzzi L, Singh AS, Price DK, Danesi R, Mathijssen RH, Verweij J, Figg WD, Sparreboom A (2004) Influence of genetic variants in UGT1A1 and UGT1A9 on the in vivo glucuronidation of SN-38. J Clin Pharmacol 44:854–860

    Article  PubMed  CAS  Google Scholar 

  27. Akaba K, Kimura T, Sasaki A, Tanabe S, Ikegami T, Hashimoto M, Umeda H, Yoshida H, Umetsu K, Chiba H, Yuasa I, Hayasaka K (1998) Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene: a common missense mutation among Japanese, Koreans and Chinese. Biochem Mol Biol Int 46:21–26

    PubMed  CAS  Google Scholar 

  28. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333:1171–1175

    Article  PubMed  CAS  Google Scholar 

  29. Girard H, Villeneuve L, Court MH, Fortier LC, Caron P, Hao Q, von Moltke LL, Greenblatt DJ, Guillemette C (2006) The novel UGT1A9 intronic I399 polymorphism appears as a predictor of SN-38 glucuronidation levels in the liver. Drug Metab Dispos 34:1220–1228

    Article  PubMed  CAS  Google Scholar 

  30. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24:2237–2244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yuko Akiyama for technical help in the genotype analysis as well as Ms. Kaori Kawara for serving as a research nurse. This study was supported in part by a Grant-in-Aid from the Ministry of Health and Welfare of Japan (13-10). This study was presented in part at the 97th Annual Meeting of American Association for Cancer Research, Washington, DC, April 1–5, 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutsuna Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, Ki., Ando, Y., Nagashima, F. et al. Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is associated with reduced activity for SN-38 in Japanese patients with cancer. Cancer Chemother Pharmacol 60, 515–522 (2007). https://doi.org/10.1007/s00280-006-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0396-1

Keywords

Navigation