Skip to main content

Advertisement

Log in

Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Objective: To achieve a reversal of multidrug resistance (MDR) in cancer chemotherapy, it is crucial to clarify the characteristics of MDR cells generated by various types of chemotherapeutic agents and to find novel targets. Methods: Cisplatin- and paclitaxel-resistant HeLa sublines (HeLa/CDDP and HeLa/TXL, respectively) were established by continuous exposure and their cellular changes were examined based on growth inhibition assays, the transport activity of P-glycoprotein/MDR1, and a RT-PCR analysis of MDR-related factors. Results: HeLa/CDDP cells showed cross-resistance to platinum derivatives, whereas HeLa/TXL cells were resistant to a variety of MDR1 substrates. Transport activity of MDR1 was reduced in HeLa/CDDP cells and the expression of MDR1 was significantly accelerated in HeLa/TXL cells, compared with HeLa cells. In addition, the expression levels of MDR-related transporters (MRP1–5 or BCRP), βtubulin which is a target for taxanes, and apoptosis-regulated factors were comparable among the three cell lines. On the other hand, the mRNA levels of γ-glutamyl transferase, but not γ-glutamyl cysteine synthetase, were higher in HeLa/CDDP cells than in HeLa and HeLa/TXL cells. Conclusions: HeLa/CDDP cells showed decreased activity and expression of MDR1 and overexpression of \( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{\gamma }{\text{-GT}} \) but not \( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{\gamma }{\text{-GCS,}} \) whereas the activity of MDR1 in HeLa/TXL cells was significantly enhanced. Thus, the molecular changes to HeLa cells caused by continuous exposure to cisplatin or paclitaxel were in part clarified, and therefore an understanding of the cellular changes induced by chemotherapeutic agents will be necessary to establish a strategy for reversing MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279

    Article  PubMed  CAS  Google Scholar 

  2. Wang G, Reed E, Li QQ (2004) Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review). Oncol Rep 12(5):955–965

    PubMed  CAS  Google Scholar 

  3. Torigoe T, Izumi H, Ishiguchi H, Yoshida Y, Tanabe M, Yoshida T, Igarashi T, Niina I, Wakasugi T, Imaizumi T, Momii Y, Kuwano M, Kohno K (2005) Cisplatin resistance and transcription factors. Curr Med Chem Anticancer Agents 5(1):15–27

    Article  PubMed  CAS  Google Scholar 

  4. Takara K, Sakaeda T, Okumura K (2006) An update on overcoming MDR1-mediated multidrug resistance in cancer. Curr Pharm Des 12(3):273–286

    Article  PubMed  CAS  Google Scholar 

  5. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292

    Article  PubMed  CAS  Google Scholar 

  6. Takara K, Sakaeda T, Okumura K (2004) Carvedilol: a new candidate for reversal of MDR1/P-glycoprotein-mediated multidrug resistance. Anticancer Drugs 15(4):303–309

    Article  PubMed  CAS  Google Scholar 

  7. Takara K, Sakaeda T, Yagami T, Kobayashi H, Ohmoto N, Horinouchi M, Nishiguchi K, Okumura K (2002) Cytotoxic effects of 27 anticancer drugs in HeLa and MDR1-overexpressing derivative cell lines. Biol Pharm Bull 25(6):771–778

    Article  PubMed  CAS  Google Scholar 

  8. Abbott BL (2003) ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol Oncol 21(3):115–130

    Article  PubMed  Google Scholar 

  9. Hoffmann U, Kroemer HK (2004) The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev 36(3–4):669–701

    Article  PubMed  CAS  Google Scholar 

  10. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424

    Article  PubMed  CAS  Google Scholar 

  11. Takara K, Horibe S, Obata Y, Yoshikawa E, Ohnishi N, Yokoyama T (2005) Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-fluorouracil in HeLa cells. Biol Pharm Bull 28(1):138–142

    Article  PubMed  CAS  Google Scholar 

  12. Takara K, Tsujimoto M, Kokufu M, Ohnishi N, Yokoyama T (2003) Up-regulation of MDR1 function and expression by cisplatin in LLC-PK1 cells. Biol Pharm Bull 26(2):205–209

    Article  PubMed  CAS  Google Scholar 

  13. Takara K, Tsujimoto M, Ohnishi N, Yokoyama T (2002) Digoxin up-regulates MDR1 in human colon carcinoma Caco-2 cells. Biochem Biophys Res Commun 292(1):190–194

    Article  PubMed  CAS  Google Scholar 

  14. Takara K, Tsujimoto M, Ohnishi N, Yokoyama T (2003) Effects of continuous exposure to digoxin on MDR1 function and expression in Caco-2 cells. J Pharm Pharmacol 55(5):675–681

    Article  PubMed  CAS  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  16. Takara K, Takagi K, Tsujimoto M, Ohnishi N, Yokoyama T (2003) Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA. Biochem Biophys Res Commun 306(1):116–120

    Article  PubMed  CAS  Google Scholar 

  17. Carles G, Braguer D, Dumontet C, Bourgarel V, Goncalves A, Sarrazin M, Rognoni JB, Briand C (1999) Differentiation of human colon cancer cells changes the expression of beta-tubulin isotypes and MAPs. Br J Cancer 80(8):1162–1168

    Article  PubMed  CAS  Google Scholar 

  18. Daubeuf S, Accaoui MJ, Pettersen I, Huseby NE, Visvikis A, Galteau MM (2001) Differential regulation of γ-glutamyltransferase mRNAs in four human tumour cell lines. Biochim Biophys Acta 1568(1):67–73

    PubMed  CAS  Google Scholar 

  19. Kanzaki A, Toi M, Nakayama K, Bando H, Mutoh M, Uchida T, Fukumoto M, Takebayashi Y (2001) Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res 92(4):452–458

    PubMed  CAS  Google Scholar 

  20. Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100(5):1282–1293

    Article  PubMed  CAS  Google Scholar 

  21. Kool M, de Haas M, Scheffer GL, Scheper RJ, van Eijk MJ, Juijn JA, Baas F, Borst P (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57(16):3537–3547

    PubMed  CAS  Google Scholar 

  22. Liu B, Staren ED, Iwamura T, Appert HE, Howard JM (2001) Mechanisms of taxotere-related drug resistance in pancreatic carcinoma. J Surg Res 99(2):179–186

    Article  PubMed  CAS  Google Scholar 

  23. Myhrstad MC, Carlsen H, Nordstrom O, Blomhoff R, Moskaug JO (2002) Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med 32(5):386–393

    Article  PubMed  CAS  Google Scholar 

  24. Oudard S, Levalois C, Andrieu JM, Bougaran J, Validire P, Thiounn N, Poupon MF, Fourme E, Chevillard S (2002) Expression of genes involved in chemoresistance, proliferation and apoptosis in clinical samples of renal cell carcinoma and correlation with clinical outcome. Anticancer Res 22(1A):121–128

    PubMed  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  27. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7(5):584–590

    Article  PubMed  CAS  Google Scholar 

  28. Li Q, Sai Y, Kato Y, Tamai I, Tsuji A (2003) Influence of drugs and nutrients on transporter gene expression levels in Caco-2 and LS180 intestinal epithelial cell lines. Pharm Res 20(8):1119–1124

    Article  PubMed  CAS  Google Scholar 

  29. Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89(7):3070–3074

    Article  PubMed  CAS  Google Scholar 

  30. Kotoh S, Naito S, Yokomizo A, Kohno K, Kuwano M, Kumazawa J (1997) Enhanced expression of γ-glutamylcysteine synthetase and glutathione S-transferase genes in cisplatin-resistant bladder cancer cells with multidrug resistance phenotype. J Urol 157(3):1054–1058

    Article  PubMed  CAS  Google Scholar 

  31. Kurokawa H, Ishida T, Nishio K, Arioka H, Sata M, Fukumoto H, Miura M, Saijo N (1995) γ-glutamylcysteine synthetase gene overexpression results in increased activity of the ATP-dependent glutathione S-conjugate export pump and cisplatin resistance. Biochem Biophys Res Commun 216(1):258–264

    Article  PubMed  CAS  Google Scholar 

  32. Tipnis SR, Blake DG, Shepherd AG, McLellan LI (1999) Overexpression of the regulatory subunit of γ-glutamylcysteine synthetase in HeLa cells increases γ-glutamylcysteine synthetase activity and confers drug resistance. Biochem J 337(3):559–566

    Article  PubMed  CAS  Google Scholar 

  33. El-akawi Z, Abu-hadid M, Perez R, Glavy J, Zdanowicz J, Creaven PJ, Pendyala L (1996) Altered glutathione metabolism in oxaliplatin resistant ovarian carcinoma cells. Cancer Lett 105(1):5–14

    Article  PubMed  CAS  Google Scholar 

  34. Daubeuf S, Balin D, Leroy P, Visvikis A (2003) Different mechanisms for gamma-glutamyltransferase-dependent resistance to carboplatin and cisplatin. Biochem Pharmacol 66(4):595–604

    Article  PubMed  CAS  Google Scholar 

  35. Ranganathan S, Benetatos CA, Colarusso PJ, Dexter DW, Hudes GR (1998) Altered β-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br J Cancer 77(4):562–566

    PubMed  CAS  Google Scholar 

  36. Johnstone RW, Cretney E, Smyth MJ (1999) P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93(3):1075–1085

    PubMed  CAS  Google Scholar 

  37. Sakaeda T, Nakamura T, Hirai M, Kimura T, Wada A, Yagami T, Kobayashi H, Nagata S, Okamura N, Yoshikawa T, Shirakawa T, Gotoh A, Matsuo M, Okumura K (2002) MDR1 up-regulated by apoptotic stimuli suppresses apoptotic signaling. Pharm Res 19(9):1323–1329

    Article  PubMed  CAS  Google Scholar 

  38. Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW (1998) The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA 95(12):7024–7029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an “Academic Frontier” Project for a Matching Fund Subsidy for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Takara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takara, K., Obata, Y., Yoshikawa, E. et al. Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel. Cancer Chemother Pharmacol 58, 785–793 (2006). https://doi.org/10.1007/s00280-006-0226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0226-5

Keywords

Navigation