Skip to main content
Log in

Antitumor activity of albendazole against the human colorectal cancer cell line HT-29: in vitro and in a xenograft model of peritoneal carcinomatosis

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

The peritoneal surface remains an important failure site for patients with colorectal cancer. We have recently shown that albendazole (ABZ), a safe and effective anthelmintic drug, has profound antitumor activity in hepatocellular cancer. Furthermore, albendazole also possesses unique physiochemical and pharmacokinetic properties probably making it a potential drug for use in the regional treatment of peritoneal carcinomatosis (PC). The current study was therefore designed to investigate this concept under both in vitro and in vivo conditions using human colorectal cancer cells HT-29. In cell culture, studies were conducted to investigate the effect of ABZ and its major metabolites, albendazole sulfoxide (ABZ-SO) and albendazole sulfone (ABZ-SO2) on the growth of human colorectal cell line HT-29. We also investigated the effects of ABZ on the cell cycle and the possible induction of apoptosis in these cells. Male nude mice inoculated intraperitoneally (i.p.) with HT-29 cells were treated with various schedules of ABZ given i.p. or orally for 6 weeks. Response was evaluated as the number of peritoneal tumor nodules present in animals at the end of the treatment period. In vitro, ABZ treatment of cells for 5 days led to profound inhibition of growth. 3H-Thymidine assay and trypan blue viable cell counts confirmed the dose- and time-dependency of the ABZ effect, while recovery experiments revealed the reversible nature of this inhibition. ABZ-SO and ABZ-SO2 were also evaluated in cell culture studies and compared with the parent drug. In HT-29 cells, the IC50 values were calculated to be 0.12 μM for ABZ and 2.35 μM for ABZ-SO. The other metabolite, ABZ-SO2, was completely inactive. Studies on the mechanism of ABZ action, revealed arrest of HT-29 cells at the G2/M phase of the cell cycle, while TUNEL, DNA laddering and caspase-3 activity all confirmed ABZ induced apoptosis. In nude mice with peritoneal HT-29 xenografts, ABZ profoundly inhibited peritoneal tumor growth. While alternate i.p. dosing (ABZ, 150 mg/kg) led to the highest degree of tumor growth suppression (P<0.001), schedules such as once-weekly dosing and even a single dose for the entire course of treatment (6 weeks) were also effective in reducing peritoneal tumor growth. However, no such activity was observed when ABZ was administered orally. This study shows for the first time the potent effect of regionally administered ABZ in suppressing the growth of peritoneal tumors of human colorectal origin. The effect is thought to be brought about by arresting tumor cells at the G2/M phase of the cycle and apoptosis. These findings provide evidence for potential value of ABZ in the treatment of regional PC arising from colorectal cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jayne DG, Fook S, Loi C, Seow-Choen F (2002) Peritoneal carcinomatosis from colorectal cancer. Br J Surg 89:1545–1550

    Article  CAS  PubMed  Google Scholar 

  2. Sugarbaker PH, Graves T, DeBruijn EA, Cunliffe WJ, Mullins RE, Hull WE, Oliff L, Schlag P (1990) Early postoperative intraperitoneal chemotherapy as an adjuvant therapy to surgery for peritoneal carcinomatosis from gastrointestinal cancer: pharmacological studies. Cancer Res 50:5790–5794

    CAS  PubMed  Google Scholar 

  3. Sticca RPMDF (2003) Peritoneal carcinomatosis: a final frontier (editorial). Ann Surg Oncol 10(5):484–485

    Article  PubMed  Google Scholar 

  4. Mohamed F, Stuart OA, Sugarbaker PH (2003) Pharmacokinetics and tissue distribution of intraperitoneal docetaxel with different carrier solutions. J Surg Res 113:114–120

    Article  CAS  PubMed  Google Scholar 

  5. De Silva N, Guyatt H, Bundy D (1997) Anthelmintics. A comparative review of their clinical pharmacology. Drugs 53:769–788

    CAS  PubMed  Google Scholar 

  6. Morris DL, Dykes PW, Dickson B, Marriner SE, Bogan JA, Burrows FG (1983) Albendazole in hydatid disease. Br Med J Clin Res Ed 286:103–104

    CAS  Google Scholar 

  7. Morris DL (1983) Chemotherapy of hydatid disease. J Antimicrob Chemother 11:494–496

    CAS  PubMed  Google Scholar 

  8. Pourgholami MH, Woon L, Almajd R, Akhter J, Bowery P, Morris DL (2001) In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett 165:43–49

    Article  CAS  PubMed  Google Scholar 

  9. Morris DL, Jourdan JL, Pourgholami MH (2001) Pilot study of albendazole in patients with advanced malignancy. Effect on serum tumor markers/high incidence of neutropenia. Oncology 61:42–46

    Article  CAS  Google Scholar 

  10. Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA (2002) Mebendazole elicits a potent anti-tumor effect on human cancer cell lines both in vitro and in vivo. Clin Cancer Res 8:2963–2969

    CAS  PubMed  Google Scholar 

  11. Sasaki J, Ramesh R, Chada S, Gomyo Y, Roth JA, Mukhopadhyay T (2002) The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther 1:1201–1209

    CAS  PubMed  Google Scholar 

  12. Marriner SE, Morris DL, Dickson B, Bogan JA (1986) Pharmacokinetics of albendazole in man. Eur J Clin Pharmacol 30:705–708

    CAS  PubMed  Google Scholar 

  13. Edwards G, Breckenridge AM (1988) Clinical pharmacokinetics of anthelmintic drugs. Clin Pharmacokinet 15:67–93

    CAS  PubMed  Google Scholar 

  14. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352

    CAS  PubMed  Google Scholar 

  15. Macario AJ, Dugan C, Perez-Lloret IL, Conway de Macario E (1981) Purification of erythroblastic nests. Blood 57:922–927

    CAS  PubMed  Google Scholar 

  16. Taylor IW (1980) A rapid single step staining technique for DNA analysis by flow microfluorimetry. J Histochem Cytochem 28:1021–1024

    CAS  PubMed  Google Scholar 

  17. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  18. Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR (1994) A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 22:5506–5507

    CAS  PubMed  Google Scholar 

  19. Jung MY, Kwon SK, Moon A (2001) Chemopreventive allylthiopyridazine derivatives induce apoptosis in SK-Hep-1 hepatocarcinoma cells through a caspase-3-dependent mechanism. Eur J Cancer 37:2104–2110

    Article  CAS  PubMed  Google Scholar 

  20. Lacey E (1989) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles (erratum appears in Int J Parasitol, May; 19(3):359). Int J Parasitol 18:885–936

    Article  Google Scholar 

  21. Lacey E (1990) Mode of action of benzimidazoles. Parasitol Today 6:112–115

    Article  CAS  PubMed  Google Scholar 

  22. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    CAS  PubMed  Google Scholar 

  23. Lacey E, Watson TR (1985) Activity of benzimidazole carbamates against L1210 mouse leukaemia cells: correlation with in vitro tubulin polymerization assay. Biochem Pharmacol 34:3603–3605

    Article  CAS  PubMed  Google Scholar 

  24. Rolin S, Souhaili-el Amri H, Batt AM, Levy M, Bagrel D, Siest G (1989) Study of the in vitro bioactivation of albendazole in human liver microsomes and hepatoma cell lines. Cell Biol Toxicol 5:1–14

    Article  CAS  PubMed  Google Scholar 

  25. De Lima Vazquez V, Stuart OA, Mohamed F, Sugarbaker PH (2003) Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics. Cancer Chemother Pharmacol 52:108–112

    Article  CAS  PubMed  Google Scholar 

  26. Flessner MF, Dedrick RL, Schultz JS (1984) A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 246:R597–R607

    CAS  PubMed  Google Scholar 

  27. Dedrick RL, Myers CE, Bungay PM, DeVita VT Jr (1978) Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep 62:1–11

    CAS  PubMed  Google Scholar 

  28. de Bree E, Witkamp AJ, Zoetmulder FA (2002) Intraperitoneal chemotherapy for colorectal cancer. J Surg Oncol 79:46–61

    Article  PubMed  Google Scholar 

  29. Markman M (2001) Intraperitoneal chemotherapy in the management of malignant disease. Expert Rev Anticancer Ther 1:142–148

    CAS  PubMed  Google Scholar 

  30. Jacquet P, Sugarbaker PH (1996) Peritoneal-plasma barrier. Cancer Treat Res 82:53–63

    CAS  PubMed  Google Scholar 

  31. Sugarbaker PH, Stuart OA, Vidal-Jove J, Pessagno AM, DeBruijn EA (1996) Pharmacokinetics of the peritoneal-plasma barrier after systemic mitomycin C administration. Cancer Treat Res 82:41–52

    CAS  PubMed  Google Scholar 

  32. Theodorides VJ, Gyurik RJ, Kingsbury WD, Parish RC (1976) Anthelmintic activity of albendazole against liver flukes, tapeworms, lung and gastrointestinal roundworms. Experientia 32:702–703

    CAS  PubMed  Google Scholar 

  33. Gottschall DW (1990) The metabolism of benzimidazole anthelmintics. Parasitol Today 6:115–124

    Article  CAS  PubMed  Google Scholar 

  34. Bogan JA, Marriner S (1980) Analysis of benzimidazoles in body fluids by high-performance liquid chromatography. J Pharm Sci 69:422–423

    CAS  PubMed  Google Scholar 

  35. Marriner SE, Bogan JA (1980) Pharmacokinetics of albendazole in sheep. Am J Vet Res 41:1126–1129

    CAS  PubMed  Google Scholar 

  36. Souhaili-El Amri H, Mothe O, Totis M, Masson C, Batt AM, Delatour P, Siest G (1988) Albendazole sulfonation by rat liver cytochrome P-450c. J Pharmacol Exp Ther 246:758–764

    CAS  PubMed  Google Scholar 

  37. el Amri HS, Fargetton X, Delatour P, Batt AM (1987) Sulphoxidation of albendazole by the FAD-containing and cytochrome P-450 dependent mono-oxygenases from pig liver microsomes. Xenobiotica 17:1159–1168

    CAS  PubMed  Google Scholar 

  38. Rossignol JF, Maisonneuve H (1984) Albendazole: a new concept in the control of intestinal helminthiasis. Gastroenterol Clin Biol 8:569–576

    CAS  PubMed  Google Scholar 

  39. McCormick D, Chong H, Hobbs C, Datta C, Hall PA (1993) Detection of the Ki-67 antigen in fixed and wax-embedded sections with the monoclonal antibody MIB1. Histopathology 22:355–360

    CAS  PubMed  Google Scholar 

  40. Morris DL, Chinnery JB, Ubhi C (1987) A comparison of the effects of albendazole, its sulphone metabolite, and mebendazole on the viability of protoscoleces of Echinococcus granulosus in an in vitro culture system. Trans R Soc Trop Med Hyg 81:804–806

    Article  CAS  PubMed  Google Scholar 

  41. Morris DL, Taylor D (1986) Sensitivity to albendazole sulphoxide of Echinococcus granulosus scoleces in man. Lancet 2:1035

    Article  CAS  Google Scholar 

  42. Chinnery JB, Morris DL (1986) Effect of albendazole sulphoxide on viability of hydatid protoscoleces in vitro. Trans R Soc Trop Med Hyg 80:815–817

    Article  CAS  PubMed  Google Scholar 

  43. Souhaili-El Amri H, Fargetton X, Delatour P, Batt AM (1987) Sulphoxidation of albendazole by the FAD-containing and cytochrome P-450 dependent mono-oxygenases from pig liver microsomes. Xenobiotica 17:1159–1168

    CAS  PubMed  Google Scholar 

  44. Barrowman MM, Marriner SE, Bogan JA (1984) The binding and subsequent inhibition of tubulin polymerization in Ascaris suum (in vitro) by benzimidazole anthelmintics. Biochem Pharmacol 33:3037–3040

    Article  CAS  PubMed  Google Scholar 

  45. Lacey E, Watson TR (1985) Structure-activity relationships of benzimidazole carbamates as inhibitors of mammalian tubulin, in vitro. Biochem Pharmacol 34:1073–1077

    Article  CAS  PubMed  Google Scholar 

  46. Martin RJ (1997) Modes of action of anthelmintic drugs (comment). Vet J 154:11–34

    CAS  PubMed  Google Scholar 

  47. Downing KH (2000) Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16:89–111

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourgholami, M.H., Akhter, J., Wang, L. et al. Antitumor activity of albendazole against the human colorectal cancer cell line HT-29: in vitro and in a xenograft model of peritoneal carcinomatosis. Cancer Chemother Pharmacol 55, 425–432 (2005). https://doi.org/10.1007/s00280-004-0927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0927-6

Keywords

Navigation