Skip to main content

Advertisement

Log in

Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In many tumors, including prostate cancer, anti-apoptotic members of the Bcl-2 family are overexpressed and cause cell death resistance, which is a typical hallmark of cancer. Different therapeutic approaches, therefore, aim to restore the death mechanisms for enhanced apoptosis. Our recombinant immunotoxin D7(VL-VH)-PE40 is composed of the scFv D7(VL-VH) against the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer cells and of the cytotoxic domain of the bacterial toxin Pseudomonas Exotoxin A (PE40). Since Pseudomonas Exotoxin A-based immunotoxins are known to preferentially inhibit the expression of the anti-apoptotic protein Mcl-1, the rationale was to test our immunotoxin in combination with the BH3 mimetic ABT-737, which specifically inhibits Bcl-2, Bcl-xl, and Bcl-w for enhanced induction of apoptosis in prostate cancer cells. The immunotoxin showed high and specific binding and cytotoxicity against PSMA expressing prostate cancer cells marked by a direct inhibition of Mcl-1. The combination of the immunotoxin with a subtoxic concentration of ABT-737 caused additive or even synergistic effects, which were based on an enhanced apoptosis induction as detected by poly(ADP-ribose) polymerase (PARP) and Caspase-3 cleavage in Western blot. Our study shows that the combination therapy of immunotoxin plus ABT-737 is a promising approach for the future treatment of advanced prostate cancer to improve therapeutic efficacy and to reduce adverse side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABT-737:

4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl]amino]-3-nitrophenyl] sulfonylbenzamide

Bak:

Bcl-2 antagonist/killer

Bax:

Bcl-2-associated X protein

BCA:

Bicinchoninic acid

Bcl-2:

B cell lymphoma 2

Bcl-w:

Bcl-2 like 2

Bcl-xl:

B cell lymphoma extra-large

BH3:

Bcl-2 homology domain 3

CI:

Combination Index

c-myc:

Avian myelocytomatosis virus oncogene cellular homolog

ECL:

Enhanced chemiluminescence

eEF-2:

Eukaryotic elongation factor-2

Mcl-1:

Myeloid cell leukemia sequence 1

PARP:

Poly(ADP-ribose) polymerase

PE:

Pseudomonas aeruginosa Exotoxin A

PSMA:

Prostate-specific membrane antigen

WST-1:

Water-soluble tetrazolium salt

References

  1. Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, Ferlay J, Bray F, Cook MB, Devesa SS (2016) Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer 138:1388–400. https://doi.org/10.1002/ijc.29894

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–74. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–607. https://doi.org/10.1038/sj.onc.1207102

    Article  CAS  PubMed  Google Scholar 

  4. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845. https://doi.org/10.1155/2014/150845

    PubMed  PubMed Central  Google Scholar 

  6. Scarfo L, Ghia P (2013) Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol Lett 155:36–9. https://doi.org/10.1016/j.imlet.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  7. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16:273–84. https://doi.org/10.1038/nrd.2016.253

    Article  CAS  PubMed  Google Scholar 

  8. Oltersdorf T, Elmore SW, Shoemaker AR et al. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–81. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  9. Zhai D, Jin C, Satterthwait AC, Reed JC (2006) Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ 13:1419–1421. https://doi.org/10.1038/sj.cdd.4401937

    Article  CAS  PubMed  Google Scholar 

  10. van Delft MF, Wei AH, Mason KD et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–99. https://doi.org/10.1016/j.ccr.2006.08.027

    Article  PubMed  PubMed Central  Google Scholar 

  11. Adams JM, Huang DC, Strasser A et al (2005) Subversion of the Bcl-2 life/death switch in cancer development and therapy. Cold Spring Harb Symp Quant Biol 70:469–77. https://doi.org/10.1101/sqb.2005.70.009

    Article  CAS  PubMed  Google Scholar 

  12. Chen S, Dai Y, Harada H, Dent P, Grant S (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67:782–91. https://doi.org/10.1158/0008-5472.CAN-06-3964

    Article  CAS  PubMed  Google Scholar 

  13. Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, Goyal B, Pawel BR, Hogarty MD (2009) Mcl1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule Bcl2-family antagonists. Cancer Biol Ther 8:1587–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michalska M, Schultze-Seemann S, Bogatyreva L, Hauschke D, Wetterauer U, Wolf P (2016) In vitro and in vivo effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer. Oncotarget 7:22531–22542. https://doi.org/10.18632/oncotarget.8001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolf P, Alt K, Wetterauer D, Buhler P, Gierschner D, Katzenwadel A, Wetterauer U, Elsasser-Beile U (2010) Preclinical evaluation of a recombinant anti-prostate specific membrane antigen single-chain immunotoxin against prostate cancer. J Immunother 33:262–71. https://doi.org/10.1097/CJI.0b013e3181c5495c

    Article  CAS  PubMed  Google Scholar 

  16. Michalska M, Wolf P (2015) Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 6:963. https://doi.org/10.3389/fmicb.2015.00963

    Article  PubMed  PubMed Central  Google Scholar 

  17. Antignani A, Sarnovsky R, FitzGerald DJ (2014) ABT-737 promotes the dislocation of ER luminal proteins to the cytosol, including pseudomonas exotoxin. Mol Cancer Ther 13:1655–1663. https://doi.org/10.1158/1535-7163.MCT-13-0998

    Article  CAS  PubMed  Google Scholar 

  18. Hollevoet K, Antignani A, Fitzgerald DJ, Pastan I (2014) Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother 37:8–15. https://doi.org/10.1097/CJI.0000000000000010

    Article  CAS  PubMed  Google Scholar 

  19. Mattoo AR, FitzGerald DJ (2013) Combination treatments with ABT-263 and an immunotoxin produce synergistic killing of ABT-263-resistant small cell lung cancer cell lines. Int J Cancer 132:978–87. https://doi.org/10.1002/ijc.27732

    Article  CAS  PubMed  Google Scholar 

  20. Risberg K, Fodstad O, Andersson Y (2011) Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma. PLoS One 6:e24012. https://doi.org/10.1371/journal.pone.0024012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bijnsdorp IV, Giovannetti E, Peters GJ (2011) Analysis of drug interactions. Method Mol Biol 731:421–34. https://doi.org/10.1007/978-1-61779-080-5_34

    Article  CAS  Google Scholar 

  22. Anvari K, Seilanian Toussi M, alantari M et al (2012) Expression of Bcl-2 and Bax in advanced or metastatic prostate carcinoma. Urol J 9:381–388

    PubMed  Google Scholar 

  23. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA (2000) Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 60:6052–6060

    CAS  PubMed  Google Scholar 

  24. Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ Jr (2000) An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60:6101–6110

    CAS  PubMed  Google Scholar 

  25. Reiner T, de Las Pozas A, Parrondo R, Palenzuela D, Cayuso W, Rai P, Perez-Stable C (2015) Mcl-1 protects prostate cancer cells from cell death mediated by chemotherapy-induced DNA damage. Oncoscience 2:703–15. https://doi.org/10.18632/oncoscience.231

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K, Igawa M (2006) Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 12:6116–6124. https://doi.org/10.1158/1078-0432.CCR-06-0147

    Article  CAS  PubMed  Google Scholar 

  27. Cervantes-Gomez F, Lavergne B, Keating MJ, Wierda WG, Gandhi V (2015) Combination of Pim kinase inhibitors and Bcl-2 antagonists in chronic lymphocytic leukemia cells. Leuk Lymphoma. https://doi.org/10.3109/10428194.2015.1063141

    PubMed  PubMed Central  Google Scholar 

  28. Parrondo R, de Las Pozas A, Reiner T, Perez-Stable C (2013) ABT-737, a small molecule Bcl-2/Bcl-xL antagonist, increases antimitotic-mediated apoptosis in human prostate cancer cells. Peer J 1:e144. https://doi.org/10.7717/peerj.144

    Article  PubMed  PubMed Central  Google Scholar 

  29. Song JH, Kraft AS (2012) Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737. Cancer Res 72:294–303. https://doi.org/10.1158/0008-5472.CAN-11-3240

    Article  CAS  PubMed  Google Scholar 

  30. Yamaguchi R, Janssen E, Perkins G, Ellisman M, Kitada S, Reed JC (2011) Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One 6:e24102. https://doi.org/10.1371/journal.pone.0024102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamaki H, Harashima N, Hiraki M, Arichi N, Nishimura N, Shiina H, Naora K, Harada M (2014) Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget 5:11399–11412. https://doi.org/10.18632/oncotarget.2550

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Wilhelm Sander-Stiftung (Grant No. 2016.089.01 to Philipp Wolf).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Wolf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noll, T., Schultze-Seemann, S., Kuckuck, I. et al. Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunol Immunother 67, 413–422 (2018). https://doi.org/10.1007/s00262-017-2097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2097-5

Keywords

Navigation