Skip to main content

Advertisement

Log in

Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue?

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Combining different standard therapies with immunotherapy for the treatment of solid tumours has proven to yield a greater clinical benefit than when each is applied separately; however, the percentage of complete responses is still far from optimal, and there is an urgent need for improved treatment modalities. The latest literature data suggest that tertiary lymphoid structures (TLS), previously shown to correlate with the severity of autoimmune diseases or transplant rejection, are also formed in tumours, have a significant beneficial effect on survival and might reflect the generation of an effective immune response in close proximity to the tumour. Thus, the facilitation of TLS formation in tumour stroma could provide novel means to improve the efficiency of immunotherapy and other standard therapies. However, little is known about the mechanisms regulating the formation of tumour-associated TLS. Studies of chronic inflammatory diseases and transplant rejection have demonstrated that TLS formation and/or function requires the presence of B cells. Additionally, the infiltration of B cells into the tumour stroma has been demonstrated to be a significant prognostic factor for improved survival in different human tumours. This suggests that B cells could play a beneficial role in anti-tumour immune response not only in the context of antibody production, antigen presentation and Th1-promoting cytokine production, but also TLS formation. This review focuses on the latest discoveries in tumour-infiltrating B cell functions, their role in TLS formation and relevance in human tumour control, revealing novel opportunities to improve cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

DN:

Double negative

ER:

Estrogen receptor

FDC:

Follicular dendritic cell

HEV:

High endothelial venule

HR:

Hazard ratio

Ig:

Immunoglobulin

IGKC:

Immunoglobulin kappa chain

ILF:

Isolated lymphoid follicle

LN:

Lymph node

LT:

Lymphotoxin

LTi cell:

Lymphoid tissue inducer cell

LTo cell:

Lymphoid tissue organiser cell

NK cell:

Natural killer cell

NSCLC:

Non-small-cell lung cancer

PDAC:

Pancreatic ductal adenocarcinoma

SLO:

Secondary lymphoid organ

TFH cell:

T follicular helper cell

Th cell:

T helper cell

TIB cell:

Tumour-infiltrating B cell

TLS:

Tertiary lymphoid structure

Treg cell:

T regulatory cell

References

  1. Ramakrishnan R, Gabrilovich DI (2013) Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol Immunother 62(3):405–410. doi:10.1007/s00262-012-1390-6

    CAS  PubMed  Google Scholar 

  2. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, Kefford RF, Hersey P, Scolyer RA (2012) Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 18(5):1386–1394. doi:10.1158/1078-0432.CCR-11-2479

    CAS  PubMed  Google Scholar 

  3. Coventry BJ, Ashdown ML (2012) Complete clinical responses to cancer therapy caused by multiple divergent approaches: a repeating theme lost in translation. Cancer Manag Res 4:137–149. doi:10.2147/CMAR.S31887

    PubMed Central  PubMed  Google Scholar 

  4. Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR (2012) The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol 39(3):323–339. doi:10.1053/j.seminoncol.2012.02.006

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605. doi:10.1158/0008-5472.CAN-11-1316

    CAS  PubMed  Google Scholar 

  6. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. NatRev Cancer 12(4):298–306. doi:10.1038/nrc3245

    CAS  Google Scholar 

  7. Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach A, Itoh K (1990) Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg 125(2):200–205. doi:10.1001/archsurg.1990.01410140078012

    CAS  PubMed  Google Scholar 

  8. Schoorl R, Riviere AB, Borne AE, Feltkamp-Vroom TM (1976) Identification of T and B lymphocytes in human breast cancer with immunohistochemical techniques. Am J Pathol 84(3):529–544

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Jackson PA, Green MA, Marks CG, King RJ, Hubbard R, Cook MG (1996) Lymphocyte subset infiltration patterns and HLA antigen status in colorectal carcinomas and adenomas. Gut 38(1):85–89. doi:10.1136/gut.38.1.85

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pages F, Speicher MR, Trajanoski Z, Galon J (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795. doi:10.1016/j.immuni.2013.10.003

    CAS  PubMed  Google Scholar 

  11. Shimokawara I, Imamura M, Yamanaka N, Ishii Y, Kikuchi K (1982) Identification of lymphocyte subpopulations in human breast cancer tissue and its significance: an immunoperoxidase study with anti-human T- and B-cell sera. Cancer 49(7):1456–1464. doi:10.1002/1097-0142(19820401)49:7<1456::AID-CNCR2820490724>3.0.CO;2-#

    CAS  PubMed  Google Scholar 

  12. Monach PA, Schreiber H, Rowley DA (1993) CD4+ and B lymphocytes in transplantation immunity. II. Augmented rejection of tumor allografts by mice lacking B cells. Transplantation 55(6):1356–1361

    CAS  PubMed  Google Scholar 

  13. Brodt P, Gordon J (1978) Anti-tumor immunity in B lymphocyte-deprived mice. I. Immunity to a chemically induced tumor. J Immunol 121(1):359–362

    CAS  PubMed  Google Scholar 

  14. Kammertoens T, Qin Z, Briesemeister D, Bendelac A, Blankenstein T (2012) B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-alpha, perforin). Int J Cancer 131(7):1499–1508. doi:10.1002/ijc.27411

    CAS  PubMed  Google Scholar 

  15. Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM, Balkwill FR (2011) B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 108(26):10662–10667. doi:10.1073/pnas.1100994108

    CAS  PubMed Central  PubMed  Google Scholar 

  16. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423. doi:10.1016/j.ccr.2005.04.014

    PubMed  Google Scholar 

  17. Fremd C, Schuetz F, Sohn C, Beckhove P, Domschke C (2013) B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology 2(7):e25443. doi:10.4161/onci.25443

    PubMed Central  PubMed  Google Scholar 

  18. Wu CW, Wang SY, Chiang H, Lui WY, P’Eng FK, Ho CK (1992) Functional capacity of a tumor-infiltrating B-cell line: lymphokine secretion. Immunol Res 11(1):34–41. doi:10.1007/BF02918606

    CAS  PubMed  Google Scholar 

  19. Katano M, Kubota E, Nagumo F, Matsuo T, Hisatsugu T, Tadano J (1994) Inhibition of tumor cell growth by a human B-cell line. Biotherapy 8(1):1–6. doi:10.1007/BF01878115

    CAS  PubMed  Google Scholar 

  20. Qin Z, Blankenstein T (1995) Tumor growth inhibition mediated by lymphotoxin: evidence of B lymphocyte involvement in the antitumor response. Cancer Res 55(21):4747–4751

    CAS  PubMed  Google Scholar 

  21. Lopez DM, Blomberg BB, Padmanabhan RR, Bourguignon LY (1989) Nuclear disintegration of target cells by killer B lymphocytes from tumor-bearing mice. FASEB J 3(1):37–43

    CAS  PubMed  Google Scholar 

  22. Norimov A, Khaitov RM, Gambarov SS (1976) Functional activity of splenic T- and B-cells during the process of tumor growth. Biull Eksp Biol Med 82(12):1475–1477

    PubMed  Google Scholar 

  23. Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD (1986) Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg 95(2):142–152

    CAS  PubMed  Google Scholar 

  24. Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, Boehm D, Gebhard S, Petry I, Lebrecht A, Cadenas C, Marchan R, Stewart JD, Solbach C, Holmberg L, Edlund K, Kultima HG, Rody A, Berglund A, Lambe M, Isaksson A, Botling J, Karn T, Muller V, Gerhold-Ay A, Cotarelo C, Sebastian M, Kronenwett R, Bojar H, Lehr HA, Sahin U, Koelbl H, Gehrmann M, Micke P, Rahnenfuhrer J, Hengstler JG (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18(9):2695–2703. doi:10.1158/1078-0432.CCR-11-2210

    CAS  PubMed  Google Scholar 

  25. Richards CH, Flegg KM, Roxburgh CS, Going JJ, Mohammed Z, Horgan PG, McMillan DC (2012) The relationships between cellular components of the peritumoural inflammatory response, clinicopathological characteristics and survival in patients with primary operable colorectal cancer. Br J Cancer 106(12):2010–2015. doi:10.1038/bjc.2012.211

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P, Lash TL, Hamilton-Dutoit SJ, Bergh J, Sotiriou C, Black MA, Miller LD (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 14(4):R34. doi:10.1186/gb-2013-14-4-r34

    PubMed Central  PubMed  Google Scholar 

  27. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, Lehr HA, Hengstler JG, Kolbl H, Gehrmann M (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413. doi:10.1158/0008-5472.CAN-07-5206

    CAS  PubMed  Google Scholar 

  28. Schmidt M, Micke P, Gehrmann M, Hengstler JG (2012) Immunoglobulin kappa chain as an immunologic biomarker of prognosis and chemotherapy response in solid tumors. Oncoimmunology 1(7):1156–1158. doi:10.4161/onci.21653

    PubMed Central  PubMed  Google Scholar 

  29. Chen Z, Gerhold-Ay A, Gebhard S, Boehm D, Solbach C, Lebrecht A, Battista M, Sicking I, Cotarelo C, Cadenas C, Marchan R, Stewart JD, Gehrmann M, Koelbl H, Hengstler JG, Schmidt M (2012) Immunoglobulin kappa C predicts overall survival in node-negative breast cancer. PLoS ONE 7(9):e44741. doi:10.1371/journal.pone.0044741

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR (2012) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 132(2):545–553. doi:10.1007/s10549-011-1620-1

    CAS  PubMed  Google Scholar 

  31. Ascierto ML, Kmieciak M, Idowu MO, Manjili R, Zhao Y, Grimes M, Dumur C, Wang E, Ramakrishnan V, Wang XY, Bear HD, Marincola FM, Manjili MH (2012) A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat 131(3):871–880. doi:10.1007/s10549-011-1470-x

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Nelson BH (2010) CD20 + B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982. doi:10.4049/jimmunol.1001323

    CAS  PubMed  Google Scholar 

  33. Namm JP, Li Q, Lao X, Lubman DM, He J, Liu Y, Zhu J, Wei S, Chang AE (2012) B lymphocytes as effector cells in the immunotherapy of cancer. JSurgOncol 105(4):431–435

    CAS  Google Scholar 

  34. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, Johnson LL, Swain SL, Lund FE (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. NatImmunol 1(6):475–482. doi:10.1038/82717

    CAS  Google Scholar 

  35. Lund FE, Randall TD (2010) Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat Rev Immunol 10(4):236–247. doi:10.1038/nri2729

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Gray D, Gray M, Barr T (2007) Innate responses of B cells. Eur J Immunol 37(12):3304–3310. doi:10.1002/eji.200737728

    CAS  PubMed  Google Scholar 

  37. Whitmire JK, Asano MS, Kaech SM, Sarkar S, Hannum LG, Shlomchik MJ, Ahmed R (2009) Requirement of B cells for generating CD4+ T cell memory. J Immunol 182(4):1868–1876. doi:10.4049/jimmunol.0802501

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Deola S, Panelli MC, Maric D, Selleri S, Dmitrieva NI, Voss CY, Klein H, Stroncek D, Wang E, Marincola FM (2008) Helper B cells promote cytotoxic T cell survival and proliferation independently of antigen presentation through CD27/CD70 interactions. J Immunol 180(3):1362–1372

    Google Scholar 

  39. Vadasz Z, Haj T, Kessel A, Toubi E (2013) B-regulatory cells in autoimmunity and immune mediated inflammation. FEBS Lett 587(13):2074–2078. doi:10.1016/j.febslet.2013.05.023

    CAS  PubMed  Google Scholar 

  40. Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN (2012) Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 33(6):297–305. doi:10.1016/j.it.2012.04.006

    CAS  PubMed  Google Scholar 

  41. Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S, Junghans RP (2001) Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res 61(21):7889–7899

    CAS  PubMed  Google Scholar 

  42. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H, Hersh EM (2002) Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 169(4):1829–1836

    CAS  PubMed  Google Scholar 

  43. Hansen MH, Nielsen HV, Ditzel HJ (2002) Translocation of an intracellular antigen to the surface of medullary breast cancer cells early in apoptosis allows for an antigen-driven antibody response elicited by tumor-infiltrating B cells. J Immunol 169(5):2701–2711

    CAS  PubMed  Google Scholar 

  44. Hansen MH, Nielsen H, Ditzel HJ (2001) The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc Natl Acad Sci USA 98(22):12659–12664. doi:10.1073/pnas.171460798

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Nzula S, Going JJ, Stott DI (2003) Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res 63(12):3275–3280

    CAS  PubMed  Google Scholar 

  46. Pavoni E, Monteriu G, Santapaola D, Petronzelli F, Anastasi AM, Pelliccia A, D’Alessio V, De Santis R, Minenkova O (2007) Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells. BMC Biotechnol 7:70. doi:10.1186/1472-6750-7-70

    PubMed Central  PubMed  Google Scholar 

  47. Kotlan B, Simsa P, Teillaud JL, Fridman WH, Toth J, McKnight M, Glassy MC (2005) Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B lymphocytes. J Immunol 175(4):2278–2285

    CAS  PubMed  Google Scholar 

  48. Simsa P, Teillaud JL, Stott DI, Toth J, Kotlan B (2005) Tumor-infiltrating B cell immunoglobulin variable region gene usage in invasive ductal breast carcinoma. Pathol Oncol Res 11(2):92–97

    CAS  PubMed  Google Scholar 

  49. Maletzki C, Jahnke A, Ostwald C, Klar E, Prall F, Linnebacher M (2012) Ex-vivo clonally expanded B lymphocytes infiltrating colorectal carcinoma are of mature immunophenotype and produce functional IgG. PLoS ONE 7(2):e32639. doi:10.1371/journal.pone.0032639

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Wu H, Pancook JD, Beuerlein G, Chilton T, Pecht G, Huse WD, Watkins JD (2002) Cloning, isolation and characterization of human tumor in situ monoclonal antibodies. Cancer Immunol Immunother 51(2):79–90. doi:10.1007/s00262-001-0258-y

    CAS  PubMed  Google Scholar 

  51. Wang Y, Ylera F, Boston M, Kang SG, Kutok JL, Klein-Szanto AJ, Junghans RP (2007) Focused antibody response in plasma cell-infiltrated non-medullary (NOS) breast cancers. Breast Cancer Res Treat 104(2):129–144. doi:10.1007/s10549-006-9409-3

    CAS  PubMed  Google Scholar 

  52. Yasuda M, Takenoyama M, Obata Y, Sugaya M, So T, Hanagiri T, Sugio K, Yasumoto K (2002) Tumor-infiltrating B lymphocytes as a potential source of identifying tumor antigen in human lung cancer. Cancer Res 62(6):1751–1756

    CAS  PubMed  Google Scholar 

  53. Imahayashi S, Ichiyoshi Y, Yoshino I, Eifuku R, Takenoyama M, Yasumoto K (2000) Tumor-infiltrating B-cell-derived IgG recognizes tumor components in human lung cancer. Cancer Invest 18(6):530–536

    CAS  PubMed  Google Scholar 

  54. O’Brien PM, Millan DW, Davis JA, Campo MS (2005) In situ isolation of immunoglobulin sequences expressed by single tumor-infiltrating B cells using laser-assisted microdissection. Mol Biotechnol 29(2):101–109

    PubMed  Google Scholar 

  55. Willis SN, Mallozzi SS, Rodig SJ, Cronk KM, McArdel SL, Caron T, Pinkus GS, Lovato L, Shampain KL, Anderson DE, Anderson RC, Bruce JN, O’Connor KC (2009) The microenvironment of germ cell tumors harbors a prominent antigen-driven humoral response. J Immunol 182(5):3310–3317. doi:10.4049/jimmunol.0803424

    CAS  PubMed  Google Scholar 

  56. Yeilding NM, Gerstner C, Kirkwood JM (1992) Analysis of two human monoclonal antibodies against melanoma. Int J Cancer 52(6):967–973

    CAS  PubMed  Google Scholar 

  57. Zhang H, Lake DF, Barbuto JA, Bernstein RM, Grimes WJ, Hersh EM (1995) A human monoclonal antimelanoma single-chain Fv antibody derived from tumor-infiltrating lymphocytes. Cancer Res 55(16):3584–3591

    CAS  PubMed  Google Scholar 

  58. Konorza G, Sesterhenn K, Krueger GR, Ablashi DV (1979) Distribution of T- and B-cells and of immunoglobulin-producing cells in tumor tissue of patients with nasopharyngeal carcinoma. J Cancer Res Clin Oncol 93(2):195–204

    CAS  PubMed  Google Scholar 

  59. Shigematsu Y, Hanagiri T, Kuroda K, Baba T, Mizukami M, Ichiki Y, Yasuda M, Takenoyama M, Sugio K, Yasumoto K (2009) Malignant mesothelioma-associated antigens recognized by tumor-infiltrating B cells and the clinical significance of the antibody titers. Cancer Sci 100(7):1326–1334. doi:10.1111/j.1349-7006.2009.01181.x

    CAS  PubMed  Google Scholar 

  60. Punt CJ, Barbuto JA, Zhang H, Grimes WJ, Hatch KD, Hersh EM (1994) Anti-tumor antibody produced by human tumor-infiltrating and peripheral blood B lymphocytes. Cancer Immunol Immunother 38(4):225–232

    CAS  PubMed  Google Scholar 

  61. Zirakzadeh AA, Marits P, Sherif A, Winqvist O (2013) Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. J Immunol 190(11):5847–5855. doi:10.4049/jimmunol.1203279

    CAS  PubMed  Google Scholar 

  62. Yasuda M, Mizukami M, Hanagiri T, Shigematsu Y, Fukuyama T, Nagata Y, So T, Ichiki Y, Sugaya M, Takenoyama M, Sugio K, Yasumoto K (2006) Antigens recognized by IgG derived from tumor-infiltrating B lymphocytes in human lung cancer. Anticancer Res 26(5A):3607–3611

    CAS  PubMed  Google Scholar 

  63. Mizukami M, Hanagiri T, Yasuda M, Kuroda K, Shigematsu Y, Baba T, Fukuyama T, Nagata Y, So T, Ichiki Y, Sugaya M, Takenoyama M, Sugio K, Yasumoto K (2007) Antitumor effect of antibody against a SEREX-defined antigen (UOEH-LC-1) on lung cancer xenotransplanted into severe combined immunodeficiency mice. Cancer Res 67(17):8351–8357

    CAS  PubMed  Google Scholar 

  64. Mizukami M, Hanagiri T, Shigematsu Y, Baba T, Fukuyama T, Nagata Y, So T, Ichiki Y, Sugaya M, Yasuda M, Takenoyama M, Sugio K, Yasumoto K (2006) Effect of IgG produced by tumor-infiltrating B lymphocytes on lung tumor growth. Anticancer Res 26(3A):1827–1831

    PubMed  Google Scholar 

  65. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58(10):1535–1544. doi:10.1007/s00262-009-0733-4

    Google Scholar 

  66. Gilbert AE, Karagiannis P, Dodev T, Koers A, Lacy K, Josephs DH, Takhar P, Geh JL, Healy C, Harries M, Acland KM, Rudman SM, Beavil RL, Blower PJ, Beavil AJ, Gould HJ, Spicer J, Nestle FO, Karagiannis SN (2011) Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS ONE 6(4):e19330. doi:10.1371/journal.pone.0019330

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kobold S, Luetkens T, Cao Y, Bokemeyer C, Atanackovic D (2010) Prognostic and diagnostic value of spontaneous tumor-related antibodies. Clin Dev Immunol. doi:10.1155/2010/721531

    PubMed Central  PubMed  Google Scholar 

  68. Fossa A, Berner A, Fossa SD, Hernes E, Gaudernack G, Smeland EB (2004) NY-ESO-1 protein expression and humoral immune responses in prostate cancer. Prostate 59(4):440–447

    CAS  PubMed  Google Scholar 

  69. Akcakanat A, Kanda T, Koyama Y, Watanabe M, Kimura E, Yoshida Y, Komukai S, Nakagawa S, Odani S, Fujii H, Hatakeyama K (2004) NY-ESO-1 expression and its serum immunoreactivity in esophageal cancer. Cancer Chemother Pharmacol 54(1):95–100. doi:10.1007/s00280-004-0768-3

    CAS  PubMed  Google Scholar 

  70. Suppiah A, Greenman J (2013) Clinical utility of anti-p53 auto-antibody: systematic review and focus on colorectal cancer. World J Gastroenterol 19(29):4651–4670. doi:10.3748/wjg.v19.i29.4651

    PubMed Central  PubMed  Google Scholar 

  71. Silina KZP, Ancans G, Kalnina Z, Meistere I, Pismennaya A, Leja M, Line A (2013) Autoantibody biomarkers for early detection and prognosis of gastric cancer. In: 15th international congress of immunology (ICI), Milan, Italy, 22 Aug 2013. Front Immunol conference abstract. doi:10.3389/conf.fimmu.2013.02.01082

  72. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. doi:10.1038/nri2206

    CAS  PubMed  Google Scholar 

  73. Karagiannis P, Gilbert AE, Josephs DH, Ali N, Dodev T, Saul L, Correa I, Roberts L, Beddowes E, Koers A, Hobbs C, Ferreira S, Geh JL, Healy C, Harries M, Acland KM, Blower PJ, Mitchell T, Fear DJ, Spicer JF, Lacy KE, Nestle FO, Karagiannis SN (2013) IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest 123(4):1457–1474. doi:10.1172/JCI65579

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Fujimoto M, Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Koyanagi I, Aini W, Tsuruyama T, Date H, Haga H (2013) Stromal plasma cells expressing immunoglobulin G4 subclass in non-small cell lung cancer. Hum Pathol 44(8):1569–1576. doi:10.1016/j.humpath.2013.01.002

    CAS  PubMed  Google Scholar 

  75. Kalnina Z, Silina K, Line A (2008) Autoantibody profiles as biomarkers for response to therapy and early detection of cancer. Curr Canc Ther Rev 4(2):149–156. doi:10.2174/157339408784310160

    CAS  Google Scholar 

  76. Ladanyi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K, Fejos Z, Gaudi I, Dobos J, Timar J (2011) Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother 60(12):1729–1738. doi:10.1007/s00262-011-1071-x

    CAS  PubMed  Google Scholar 

  77. Eiro N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, Gonzalez LO, Lopez-Muniz A, Vizoso FJ (2012) Impact of CD68/(CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS ONE 7(12):e52796. doi:10.1371/journal.pone.0052796

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18(12):3281–3292. doi:10.1158/1078-0432.CCR-12-0234

    CAS  PubMed  Google Scholar 

  79. Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS ONE 4(7):e6412. doi:10.1371/journal.pone.0006412

    PubMed Central  PubMed  Google Scholar 

  80. Shi JY, Gao Q, Wang ZC, Zhou J, Wang X, Min ZH, Shi YH, Shi GM, Ding ZB, Ke AW, Dai Z, Qiu SJ, Song K, Fan J (2013) Margin infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res. doi:10.1158/1078-0432.CCR-12-3497

    Google Scholar 

  81. Shim HS, Byun CS, Bae MK, Lee CY, Park IK, Kim DJ, Chung KY, Lee JG (2011) Prognostic effect of stromal lymphocyte infiltration in thymic carcinoma. Lung Cancer 74(2):338–343. doi:10.1016/j.lungcan.2011.03.008

    PubMed  Google Scholar 

  82. Fang L, Lowther DE, Meizlish ML, Anderson RC, Bruce JN, Devine L, Huttner AJ, Kleinstein SH, Lee JY, Stern JN, Yaari G, Lovato L, Cronk KM, O’Connor KC (2013) The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells. Neuro Oncol 15(11):1479–1490. doi:10.1093/neuonc/not110

    CAS  PubMed  Google Scholar 

  83. Rodriguez-Pinto D (2005) B cells as antigen presenting cells. Cell Immunol 238(2):67–75. doi:10.1016/j.cellimm.2006.02.005

    CAS  PubMed  Google Scholar 

  84. Ahmadi T, Flies A, Efebera Y, Sherr DH (2008) CD40 Ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class II-binding peptides. Immunology 124(1):129–140. doi:10.1111/j.1365-2567.2007.02749.x

    CAS  PubMed Central  PubMed  Google Scholar 

  85. de Wit J, Souwer Y, Jorritsma T, Klaasse Bos H, ten Brinke A, Neefjes J, van Ham SM (2010) Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation. PLoS ONE 5(9):e13016. doi:10.1371/journal.pone.0013016

    PubMed Central  PubMed  Google Scholar 

  86. Gnjatic S, Atanackovic D, Matsuo M, Jager E, Lee SY, Valmori D, Chen YT, Ritter G, Knuth A, Old LJ (2003) Cross-presentation of HLA class I epitopes from exogenous NY-ESO-1 polypeptides by nonprofessional APCs. J Immunol 170(3):1191–1196

    CAS  PubMed  Google Scholar 

  87. Nielsen JS, Nelson BH (2012) Tumor-infiltrating B cells and T cells: working together to promote patient survival. Oncoimmunology 1(9):1623–1625. doi:10.4161/onci.21650

    PubMed Central  PubMed  Google Scholar 

  88. Carpenter EL, Mick R, Rech AJ, Beatty GL, Colligon TA, Rosenfeld MR, Kaplan DE, Chang KM, Domchek SM, Kanetsky PA, Fecher LA, Flaherty KT, Schuchter LM, Vonderheide RH (2009) Collapse of the CD27+ B-cell compartment associated with systemic plasmacytosis in patients with advanced melanoma and other cancers. Clin Cancer Res 15(13):4277–4287. doi:10.1158/1078-0432.CCR-09-0537

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Colonna-Romano G, Bulati M, Aquino A, Pellicano M, Vitello S, Lio D, Candore G, Caruso C (2009) A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev 130(10):681–690. doi:10.1016/j.mad.2009.08.003

    CAS  PubMed  Google Scholar 

  90. Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, Rodriguez C, Brieva JA (2010) Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther 12(3):R108. doi:10.1186/ar3042

    PubMed Central  PubMed  Google Scholar 

  91. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee EH, Milner EC, Sanz I (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178(10):6624–6633

    CAS  PubMed  Google Scholar 

  92. Bulati M, Buffa S, Candore G, Caruso C, Dunn-Walters DK, Pellicano M, Wu YC, Colonna Romano G (2011) B cells and immunosenescence: a focus on IgG+IgD−CD27− (DN) B cells in aged humans. Ageing Res Rev 10(2):274–284. doi:10.1016/j.arr.2010.12.002

    CAS  PubMed  Google Scholar 

  93. Caruso C, Buffa S, Candore G, Colonna-Romano G, Dunn-Walters D, Kipling D, Pawelec G (2009) Mechanisms of immunosenescence. Immun Ageing 6:10. doi:10.1186/1742-4933-6-10

    PubMed Central  PubMed  Google Scholar 

  94. Sanz I, Wei C, Lee FE, Anolik J (2008) Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol 20(1):67–82. doi:10.1016/j.smim.2007.12.006

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y, Li S, Chang AE (2011) Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 17(15):4987–4995. doi:10.1158/1078-0432.CCR-11-0207

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kemp TJ, Moore JM, Griffith TS (2004) Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation. J Immunol 173(2):892–899

    CAS  PubMed  Google Scholar 

  97. Hagn M, Schwesinger E, Ebel V, Sontheimer K, Maier J, Beyer T, Syrovets T, Laumonnier Y, Fabricius D, Simmet T, Jahrsdorfer B (2009) Human B cells secrete granzyme B when recognizing viral antigens in the context of the acute phase cytokine IL-21. J Immunol 183(3):1838–1845. doi:10.4049/jimmunol.0901066

    CAS  PubMed  Google Scholar 

  98. Hagn M, Sontheimer K, Dahlke K, Brueggemann S, Kaltenmeier C, Beyer T, Hofmann S, Lunov O, Barth TF, Fabricius D, Tron K, Nienhaus GU, Simmet T, Schrezenmeier H, Jahrsdorfer B (2011) Human B cells differentiate into granzyme B-secreting cytotoxic B lymphocytes upon incomplete T-cell help. Immunol Cell Biol 90(4):457–467. doi:10.1038/icb.2011.64

    PubMed  Google Scholar 

  99. Hagn M, Jahrsdorfer B (2012) Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway. Oncoimmunology 1(8):1368–1375. doi:10.4161/onci.22354

    PubMed Central  PubMed  Google Scholar 

  100. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Moller P, Schrezenmeier H, Jahrsdorfer B (2013) Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res 73(8):2468–2479. doi:10.1158/0008-5472.CAN-12-3450

    CAS  PubMed  Google Scholar 

  101. Klinker MW, Lundy SK (2012) Multiple mechanisms of immune suppression by B lymphocytes. Mol Med 18:123–137. doi:10.2119/molmed.2011.00333

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, De Giorgi V, Delogu LG, Engle AM, Thomas JM, Wang E, Marincola FM, Bedognetti D (2011) Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 9:174. doi:10.1186/1479-5876-9-174

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP, Biragyn A (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 71(10):3505–3515

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Horikawa M, Minard-Colin V, Matsushita T, Tedder TF (2011) Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest 121(11):4268–4280. doi:10.1172/JCI59266

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Lee-Chang C, Bodogai M, Martin-Montalvo A, Wejksza K, Sanghvi M, Moaddel R, de Cabo R, Biragyn A (2013) Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J Immunol 191(8):4141–4151. doi:10.4049/jimmunol.1300606

    CAS  PubMed  Google Scholar 

  106. Bodogai M, Lee Chang C, Wejksza K, Lai J, Merino M, Wersto RP, Gress RE, Chan AC, Hesdorffer C, Biragyn A (2013) Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res 73(7):2127–2138. doi:10.1158/0008-5472.CAN-12-4184

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ruddell A, Harrell MI, Furuya M, Kirschbaum SB, Iritani BM (2011) B lymphocytes promote lymphogenous metastasis of lymphoma and melanoma. Neoplasia 13(8):748–757

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W, Hoon DS, Wakabayashi M, Forman S, Yu H (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS ONE 8(5):e64159. doi:10.1371/journal.pone.0064159

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yang C, Lee H, Jove V, Deng J, Zhang W, Liu X, Forman S, Dellinger TH, Wakabayashi M, Yu H, Pal S (2013) Prognostic significance of B-cells and pSTAT3 in patients with ovarian cancer. PLoS ONE 8(1):e54029. doi:10.1371/journal.pone.0054029

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464(7286):302–305. doi:10.1038/nature08782

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Ammirante M, Kuraishy AI, Shalapour S, Strasner A, Ramirez-Sanchez C, Zhang W, Shabaik A, Karin M (2013) An IKKalpha-E2F1-BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence. Genes Dev 27(13):1435–1440. doi:10.1101/gad.220202.113

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Gannon PO, Poisson AO, Delvoye N, Lapointe R, Mes-Masson AM, Saad F (2009) Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J Immunol Methods 348(1–2):9–17. doi:10.1016/j.jim.2009.06.004

    CAS  PubMed  Google Scholar 

  113. Koizumi M, Hiasa Y, Kumagi T, Yamanishi H, Azemoto N, Kobata T, Matsuura B, Abe M, Onji M (2013) Increased B cell-activating factor promotes tumor invasion and metastasis in human pancreatic cancer. PLoS ONE 8(8):e71367. doi:10.1371/journal.pone.0071367

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457. doi:10.1146/annurev-immunol-020711-075032

    CAS  PubMed  Google Scholar 

  115. van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10(9):664–674. doi:10.1038/nri2832

    PubMed  Google Scholar 

  116. Kain MJ, Owens BM (2013) Stromal cell regulation of homeostatic and inflammatory lymphoid organogenesis. Immunology 140(1):12–21. doi:10.1111/imm.12119

    CAS  PubMed  Google Scholar 

  117. Onder L, Danuser R, Scandella E, Firner S, Chai Q, Hehlgans T, Stein JV, Ludewig B (2013) Endothelial cell-specific lymphotoxin-beta receptor signaling is critical for lymph node and high endothelial venule formation. J Exp Med 210(3):465–473. doi:10.1084/jem.20121462

    CAS  PubMed Central  PubMed  Google Scholar 

  118. McDonald KG, McDonough JS, Newberry RD (2005) Adaptive immune responses are dispensable for isolated lymphoid follicle formation: antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J Immunol 174(9):5720–5728

    CAS  PubMed  Google Scholar 

  119. McDonald KG, McDonough JS, Wang C, Kucharzik T, Williams IR, Newberry RD (2007) CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am J Pathol 170(4):1229–1240. doi:10.2353/ajpath.2007.060817

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Marchesi F, Martin AP, Thirunarayanan N, Devany E, Mayer L, Grisotto MG, Furtado GC, Lira SA (2009) CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles. Mucosal Immunol 2(6):486–494. doi:10.1038/mi.2009.113

    CAS  PubMed  Google Scholar 

  121. Litsiou E, Semitekolou M, Galani IE, Morianos I, Tsoutsa A, Kara P, Rontogianni D, Bellenis I, Konstantinou M, Potaris K, Andreakos E, Sideras P, Zakynthinos S, Tsoumakidou M (2013) CXCL13 production in B cells via Toll-like receptor/lymphotoxin receptor signaling is involved in lymphoid neogenesis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187(11):1194–1202. doi:10.1164/rccm.201208-1543OC

    CAS  PubMed  Google Scholar 

  122. Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC (1996) Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer Res 56(8):1707–1712

    CAS  PubMed  Google Scholar 

  123. Schrama D, Thor Straten P, Fischer WH, McLellan AD, Brocker EB, Reisfeld RA, Becker JC (2001) Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14(2):111–121

    Google Scholar 

  124. Kim HJ, Kammertoens T, Janke M, Schmetzer O, Qin Z, Berek C, Blankenstein T (2004) Establishment of early lymphoid organ infrastructure in transplanted tumors mediated by local production of lymphotoxin alpha and in the combined absence of functional B and T cells. J Immunol 172(7):4037–4047

    CAS  PubMed  Google Scholar 

  125. de Chaisemartin L, Goc J, Damotte D, Validire P, Magdeleinat P, Alifano M, Cremer I, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71(20):6391–6399. doi:10.1158/0008-5472.CAN-11-0952

    PubMed  Google Scholar 

  126. Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A, Mule JJ (2011) Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 179(1):37–45. doi:10.1016/j.ajpath.2011.03.007

    PubMed Central  PubMed  Google Scholar 

  127. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, Schell MJ, Sondak VK, Weber JS, Mule JJ (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765. doi:10.1038/srep00765

    PubMed Central  PubMed  Google Scholar 

  128. Bergomas F, Grizzi F, Doni A, Pesce S, Laghi L, Allavena P, Mantovani A, Marchesi F (2011) Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers 4(1):1–10

    PubMed Central  PubMed  Google Scholar 

  129. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6(3):205–217. doi:10.1038/nri1786

    CAS  PubMed  Google Scholar 

  130. Burrell BE, Ding Y, Nakayama Y, Park KS, Xu J, Yin N, Bromberg JS (2011) Tolerance and lymphoid organ structure and function. Front Immunol 2:64. doi:10.3389/fimmu.2011.00064

    PubMed Central  PubMed  Google Scholar 

  131. Katakai T, Nomura T, Gonda H, Sugai M, Agata Y, Nishio A, Masuda T, Sakaguchi S, Shimizu A (2006) Spontaneous large-scale lymphoid neogenesis and balanced autoimmunity versus tolerance in the stomach of H+/K+-ATPase-reactive TCR transgenic mouse. J Immunol 177(11):7858–7867

    CAS  PubMed  Google Scholar 

  132. Brown K, Sacks SH, Wong W (2011) Tertiary lymphoid organs in renal allografts can be associated with donor-specific tolerance rather than rejection. Eur J Immunol 41(1):89–96. doi:10.1002/eji.201040759

    CAS  PubMed  Google Scholar 

  133. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328(5979):749–752. doi:10.1126/science.1185837

    CAS  PubMed  Google Scholar 

  134. Gottlin EB, Bentley RC, Campa MJ, Pisetsky DS, Herndon JE 2nd, Patz EF Jr (2011) The association of intratumoral germinal centers with early-stage non-small cell lung cancer. J Thorac Oncol 6(10):1687–1690. doi:10.1097/JTO.0b013e3182217bec

    PubMed  Google Scholar 

  135. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M (1998) Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27(2):407–414. doi:10.1002/hep.510270214

    CAS  PubMed  Google Scholar 

  136. Yu H, Yang J, Jiao S, Wang J (2013) Prognostic value of B lymphocyte infiltration in breast cancer. Nan Fang Yi Ke Da Xue Xue Bao 33(5):750–755

    CAS  PubMed  Google Scholar 

  137. Ogino S, Nosho K, Irahara N, Meyerhardt JA, Baba Y, Shima K, Glickman JN, Ferrone CR, Mino-Kenudson M, Tanaka N, Dranoff G, Giovannucci EL, Fuchs CS (2009) Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res 15(20):6412–6420. doi:10.1158/1078-0432.CCR-09-1438

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Ogino S, Nosho K, Irahara N, Shima K, Baba Y, Kirkner GJ, Mino-Kenudson M, Giovannucci EL, Meyerhardt JA, Fuchs CS (2010) Negative lymph node count is associated with survival of colorectal cancer patients, independent of tumoral molecular alterations and lymphocytic reaction. Am J Gastroenterol 105(2):420–433. doi:10.1038/ajg.2009.578

    PubMed Central  PubMed  Google Scholar 

  139. Cipponi A, Mercier M, Seremet T, Baurain JF, Theate I, van den Oord J, Stas M, Boon T, Coulie PG, van Baren N (2012) Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 72(16):3997–4007. doi:10.1158/0008-5472.CAN-12-1377

    CAS  PubMed  Google Scholar 

  140. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L, Lebecque S, Fridman WH, Cadranel J (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417. doi:10.1200/JCO.2007.15.0284

    CAS  PubMed  Google Scholar 

  141. Martinet L, Le Guellec S, Filleron T, Lamant L, Meyer N, Rochaix P, Garrido I, Girard JP (2012) High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. Oncoimmunology 1(6):829–839. doi:10.4161/onci.20492

    PubMed Central  PubMed  Google Scholar 

  142. Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E, Alifano M, Validire P, Remark R, Hammond SA, Cremer I, Damotte D, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC (2013) Dendritic cells in tumor-associated tertiary lymphoid structures license the positive prognostic value of tumor-infiltrating CD8 +T cells. Cancer Res. doi:10.1158/0008-5472.CAN-13-1342

    PubMed  Google Scholar 

  143. Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard JP (2013) High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin beta-producing dendritic cells in human breast cancer. J Immunol 191(4):2001–2008. doi:10.4049/jimmunol.1300872

    CAS  PubMed  Google Scholar 

  144. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautes-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L (2012) Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 1(8):1323–1343. doi:10.4161/onci.22009

    PubMed Central  PubMed  Google Scholar 

  145. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, Slingluff CL Jr (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72(5):1070–1080. doi:10.1158/0008-5472.CAN-11-3218

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Varella AD, Bandiera DC, de Amorim AR Sr, Calvis LA, Santos IO, Escaleira N, Gentil F (1981) Treatment of disseminated malignant melanoma with high-dose oral BCG. Cancer 48(6):1353–1362

  147. Chang SG, Lee SJ, Huh JS, Lee JH (2001) Changes in mucosal immune cells of bladder tumor patient after BCG intravesical immunotherapy. Oncol Rep 8(2):257–261

    CAS  PubMed  Google Scholar 

  148. Berinstein NL, Wolf GT, Naylor PH, Baltzer L, Egan JE, Brandwein HJ, Whiteside TL, Goldstein LC, El-Naggar A, Badoual C, Fridman WH, White JM, Hadden JW (2012) Increased lymphocyte infiltration in patients with head and neck cancer treated with the IRX-2 immunotherapy regimen. Cancer Immunol Immunother 61(6):771–782. doi:10.1007/s00262-011-1134-z

    CAS  PubMed  Google Scholar 

  149. Merogi AJ, Marrogi AJ, Ramesh R, Robinson WR, Fermin CD, Freeman SM (1997) Tumor-host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 28(3):321–331

    CAS  PubMed  Google Scholar 

  150. Dong HP, Elstrand MB, Holth A, Silins I, Berner A, Trope CG, Davidson B, Risberg B (2006) NK- and B-cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol 125(3):451–458

    PubMed  Google Scholar 

  151. Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM (2012) Leucocyte composition of human breast cancer. Proc Natl Acad Sci USA 109(8):2796–2801. doi:10.1073/pnas.1104303108

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothe F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873–2892. doi:10.1172/JCI67428

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Gunderson AJ, Coussens LM (2013) B cells and their mediators as targets for therapy in solid tumors. Exp Cell Res. doi:10.1016/j.yexcr.2013.03.005

    PubMed  Google Scholar 

  154. Spaner DE, Bahlo A (2011) B lymphocytes in cancer immunology. In: Medin J, Fowler DH (eds) Experimental and applied immunotherapy, vol XVIII. Humana Press, New York, pp 37–57. doi:10.1007/978-1-60761-980-2_2

  155. Barbera-Guillem E, Nelson MB, Barr B, Nyhus JK, May KF Jr, Feng L, Sampsel JW (2000) B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48(10):541–549

    Google Scholar 

  156. Aklilu M, Stadler WM, Markiewicz M, Vogelzang NJ, Mahowald M, Johnson M, Gajewski TF (2004) Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Ann Oncol 15(7):1109–1114. doi:10.1093/annonc/mdh280

    CAS  PubMed  Google Scholar 

  157. Naslund TI, Gehrmann U, Gabrielsson S (2013) Cancer immunotherapy with exosomes requires B-cell activation. Oncoimmunology 2(6):e24533. doi:10.4161/onci.24533

    PubMed Central  PubMed  Google Scholar 

  158. Naslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S (2013) Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 190(6):2712–2719. doi:10.4049/jimmunol.1203082

    PubMed  Google Scholar 

  159. Kornbluth RS, Stempniak M, Stone GW (2012) Design of CD40 agonists and their use in growing B cells for cancer immunotherapy. Int Rev Immunol 31(4):279–288. doi:10.3109/08830185.2012.703272

    CAS  PubMed  Google Scholar 

  160. Jackaman C, Cornwall S, Graham PT, Nelson DJ (2011) CD40-activated B cells contribute to mesothelioma tumor regression. Immunol Cell Biol 89(2):255–267. doi:10.1038/icb.2010.88

    PubMed  Google Scholar 

  161. Baeten CI, Castermans K, Hillen HF, Griffioen AW (2006) Proliferating endothelial cells and leukocyte infiltration as prognostic markers in colorectal cancer. Clin Gastroenterol Hepatol 4(11):1351–1357. doi:10.1016/j.cgh.2006.08.005

    CAS  PubMed  Google Scholar 

  162. Dong J, Li J, Liu SM, Feng XY, Chen S, Chen YB, Zhang XS (2013) CD33(+)/p-STAT1(+) double-positive cell as a prognostic factor for stage IIIa gastric cancer. Med Oncol 30(1):442. doi:10.1007/s12032-012-0442-2

    PubMed Central  PubMed  Google Scholar 

  163. Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV (2009) Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMCGastroenterol 9:65

    Google Scholar 

  164. Lee HE, Chae SW, Lee YJ, Kim MA, Lee HS, Lee BL, Kim WH (2008) Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer 99(10):1704–1711. doi:10.1038/sj.bjc.6604738

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Liang J, Ding T, Guo ZW, Yu XJ, Hu YZ, Zheng L, Xu J (2013) Expression pattern of tumour-associated antigens in hepatocellular carcinoma: association with immune infiltration and disease progression. Br J Cancer 109(4):1031–1039. doi:10.1038/bjc.2013.390

    CAS  PubMed  Google Scholar 

  166. Goeppert B, Frauenschuh L, Zucknick M, Stenzinger A, Andrulis M, Klauschen F, Joehrens K, Warth A, Renner M, Mehrabi A, Hafezi M, Thelen A, Schirmacher P, Weichert W (2013) Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. Br J Cancer 109(10):2665–2674. doi:10.1038/bjc.2013.610

    CAS  PubMed  Google Scholar 

  167. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G (2009) Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9:292. doi:10.1186/1471-2407-9-292

    PubMed Central  PubMed  Google Scholar 

  168. Distel LV, Fickenscher R, Dietel K, Hung A, Iro H, Zenk J, Nkenke E, Buttner M, Niedobitek G, Grabenbauer GG (2009) Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease. Oral Oncol 45(10):e167–e174. doi:10.1016/j.oraloncology.2009.05.640

    CAS  PubMed  Google Scholar 

  169. Esteban F, Redondo M, Delgado M, Garrido F, Ruiz-Cabello F (1996) MHC class I antigens and tumour-infiltrating leucocytes in laryngeal cancer: long-term follow-up. Br J Cancer 74(11):1801–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE (2001) Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg 44(3):180–188

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227. doi:10.1158/1078-0432.CCR-08-0133

    CAS  PubMed  Google Scholar 

  172. Al-Shibli K, Al-Saad S, Andersen S, Donnem T, Bremnes RM, Busund LT (2010) The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. APMIS 118(5):371–382. doi:10.1111/j.1600-0463.2010.02609.x

    PubMed  Google Scholar 

  173. Lohr M, Edlund K, Botling J, Hammad S, Hellwig B, Othman A, Berglund A, Lambe M, Holmberg L, Ekman S, Bergqvist M, Ponten F, Cadenas C, Marchan R, Hengstler JG, Rahnenfuhrer J, Micke P (2013) The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett 333(2):222–228. doi:10.1016/j.canlet.2013.01.036

    CAS  PubMed  Google Scholar 

  174. Meyer S, Fuchs TJ, Bosserhoff AK, Hofstadter F, Pauer A, Roth V, Buhmann JM, Moll I, Anagnostou N, Brandner JM, Ikenberg K, Moch H, Landthaler M, Vogt T, Wild PJ (2012) A seven-marker signature and clinical outcome in malignant melanoma: a large-scale tissue-microarray study with two independent patient cohorts. PLoS ONE 7(6):e38222. doi:10.1371/journal.pone.0038222

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Stumpf M, Hasenburg A, Riener MO, Jutting U, Wang C, Shen Y, Orlowska-Volk M, Fisch P, Wang Z, Gitsch G, Werner M, Lassmann S (2009) Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 101(9):1513–1521. doi:10.1038/sj.bjc.6605274

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Ancuta E, Ancuta C, Zugun-Eloae F, Iordache C, Chirieac R, Carasevici E (2009) Predictive value of cellular immune response in cervical cancer. Rom J Morphol Embryol 50(4):651–655

    CAS  PubMed  Google Scholar 

  177. Nedergaard BS, Ladekarl M, Nyengaard JR, Nielsen K (2008) A comparative study of the cellular immune response in patients with stage IB cervical squamous cell carcinoma. Low numbers of several immune cell subtypes are strongly associated with relapse of disease within 5 years. Gynecol Oncol 108(1):106–111. doi:10.1016/j.ygyno.2007.08.089

    CAS  PubMed  Google Scholar 

  178. Karja V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R (2005) Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res 25(6C):4435–4438

    PubMed  Google Scholar 

  179. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT (2012) High expression of CD20+ lymphocytes in soft tissue sarcomas is a positive prognostic indicator. Oncoimmunology 1(1):75–77. doi:10.4161/onci.1.1.17825

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund (ERDF) project No 2010/0231/2DP/2.1.1.1.0/10/APIA/VIAA/044.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karīna Siliņa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siliņa, K., Rulle, U., Kalniņa, Z. et al. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue?. Cancer Immunol Immunother 63, 643–662 (2014). https://doi.org/10.1007/s00262-014-1544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1544-9

Keywords

Navigation