Skip to main content

Advertisement

Log in

MGN-3 arabinoxylan rice bran modulates innate immunity in multiple myeloma patients

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) and natural killer (NK) cells are central components of innate immunity for controlling tumor growth. The therapeutic effects of certain anti-myeloma drugs are partially mediated by targeting the innate immune response. In addition, novel types of natural compounds have been developed that efficiently modulate the activity of both the cellular and humoral compartments of immunity. MGN-3 is known as an activator of natural killer cells, inducer of apoptosis and cytokine production, and modulator of dendritic cell maturation and differentiation in vitro. We have performed a randomized, placebo-controlled study to examine the effects of MGN-3 on innate immune system parameters in 48 multiple myeloma patients. We performed immunophenotypic analysis of peripheral blood samples, determined NK cell activity, and assessed the cytokine profiles of plasma before and during 3 months of treatment. The results demonstrate a clear increase in NK activity in MGN-3-treated patients compared to the placebo group, an increased level of myeloid DCs in peripheral blood, and augmented concentrations of T helper cell type 1-related cytokines. The present study suggests that MGN-3 may represent an immunologically relevant product for activating innate immunity in multiple myeloma patients and warrants further testing to demonstrate clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68(3):160–166

    PubMed  CAS  Google Scholar 

  2. Do TH, Johnsen HE, Kjaersgaard E, Taaning E, Svane IM (2004) Impaired circulating myeloid DCs from myeloma patients. Cytotherapy 6(3):196–203

    Article  PubMed  CAS  Google Scholar 

  3. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72(6):540–547

    Article  PubMed  CAS  Google Scholar 

  4. Zitvogel L (2002) Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195(3):F9–14

    Article  PubMed  CAS  Google Scholar 

  5. Piccioli D, Sbrana S, Melandri E, Valiante NM (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195(3):335–341

    Article  PubMed  CAS  Google Scholar 

  6. Fiore F, Nuschak B, Peola S, Mariani S, Muraro M, Foglietta M, Coscia M, Bruno B, Boccadoro M, Massaia M (2005) Exposure to myeloma cell lysates affects the immune competence of dendritic cells and favors the induction of Tr1-like regulatory T cells. Eur J Immunol 35(4):1155–1163

    Article  PubMed  CAS  Google Scholar 

  7. Song W, van der Vliet HJ, Tai YT, Prabhala R, Wang R, Podar K, Catley L, Shammas MA, Anderson KC, Balk SP et al (2008) Generation of antitumor invariant natural killer T cell lines in multiple myeloma and promotion of their functions via lenalidomide: a strategy for immunotherapy. Clin Cancer Res 14(21):6955–6962

    Article  PubMed  CAS  Google Scholar 

  8. Sharma A, Khan R, Joshi S, Kumar L, Sharma M (2010) Dysregulation in T helper 1/T helper 2 cytokine ratios in patients with multiple myeloma. Leuk Lymphoma 51(5):920–927

    Article  PubMed  CAS  Google Scholar 

  9. Kovacs E (2010) Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells? Leuk Res 34(7):912–916

    Article  PubMed  CAS  Google Scholar 

  10. Xie J, Wang Y, Freeman ME III, Barlogie B, Yi Q (2003) Beta 2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 101(10):4005–4012

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka H, Matsushima H, Mizumoto N, Takashima A (2009) Classification of chemotherapeutic agents based on their differential in vitro effects on dendritic cells. Cancer Res 69(17):6978–6986

    Article  PubMed  CAS  Google Scholar 

  12. Song W, Tai YT, Tian Z, Hideshima T, Chauhan D, Nanjappa P, Exley MA, Anderson KC, Munshi NC (2011) HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia 25(1):161–168

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721

    Article  PubMed  CAS  Google Scholar 

  14. Jakubikova J, Adamia S, Kost-Alimova M, Klippel S, Cervi D, Daley JF, Cholujova D, Kong SY, Leiba M, Blotta S et al (2011) Lenalidomide targets clonogenic side population in multiple myeloma: pathophysiologic and clinical implications. Blood 117(17):4409–4419

    Article  PubMed  CAS  Google Scholar 

  15. Driscoll JJ, Dechowdhury R (2010) Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy. Target Oncol 5(4):281–289

    Article  PubMed  Google Scholar 

  16. Kim JY, Bae JH, Lee SH, Lee EY, Chung BS, Kim SH, Kang CD (2008) Induction of NKG2D ligands and subsequent enhancement of NK cell-mediated lysis of cancer cells by arsenic trioxide. J Immunother 31(5):475–486

    Article  PubMed  CAS  Google Scholar 

  17. Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M, Zocchi MR (2009) Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 23(4):641–648

    Article  PubMed  CAS  Google Scholar 

  18. Fionda C, Soriani A, Malgarini G, Iannitto ML, Santoni A, Cippitelli M (2009) Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J Immunol 183(7):4385–4394

    Article  PubMed  CAS  Google Scholar 

  19. von Lilienfeld-Toal M, Frank S, Leyendecker C, Feyler S, Jarmin S, Morgan R, Glasmacher A, Marten A, Schmidt-Wolf IG, Brossart P et al (2010) Reduced immune effector cell NKG2D expression and increased levels of soluble NKG2D ligands in multiple myeloma may not be causally linked. Cancer Immunol Immunother 59(6):829–839

    Article  CAS  Google Scholar 

  20. Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK, Schwartz EB, Lesinski GB, Benson D, Lu J et al (2010) A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 9:217

    Article  PubMed  CAS  Google Scholar 

  21. Ghoneum M, Gollapudi S (2011) Synergistic apoptotic effect of arabinoxylan rice bran (MGN-3/Biobran) and curcumin (turmeric) on human multiple myeloma cell line U266 in vitro. Neoplasma 58(2):118–123

    Article  PubMed  CAS  Google Scholar 

  22. Ghoneum M, Jewett A (2000) Production of tumor necrosis factor-alpha and interferon-gamma from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro. Cancer Detect Prev 24(4):314–324

    PubMed  CAS  Google Scholar 

  23. Ghoneum M (1998) Enhancement of human natural killer cell activity by modified arabinoxylane from rice bran (MGN-3). Int J Immunother 14(2):89–99

    CAS  Google Scholar 

  24. Cholujova D, Jakubikova J, Sedlak J (2009) BioBran-augmented maturation of human monocyte-derived dendritic cells. Neoplasma 56(2):89–95

    Article  PubMed  CAS  Google Scholar 

  25. Cholujova D, Jakubikova J, Kubes M, Arendacka B, Sapak M, Ihnatko R, Sedlak J (2008) Comparative study of four fluorescent probes for evaluation of natural killer cell cytotoxicity assays. Immunobiology 213(8):629–640

    Article  PubMed  CAS  Google Scholar 

  26. Bryant J, Day R, Whiteside TL, Herberman RB (1992) Calculation of lytic units for the expression of cell-mediated cytotoxicity. J Immunol Methods 146(1):91–103

    Article  PubMed  CAS  Google Scholar 

  27. Pross HF, Baines MG, Rubin P, Shragge P, Patterson MS (1981) Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity. J Clin Immunol 1(1):51–63

    Article  PubMed  CAS  Google Scholar 

  28. Bernal M, Garrido P, Jimenez P, Carretero R, Almagro M, Lopez P, Navarro P, Garrido F, Ruiz-Cabello F (2009) Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells. Hum Immunol 70(10):854–857

    Article  PubMed  CAS  Google Scholar 

  29. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, Cook G, Feyler S, Richards SJ, Davies FE et al (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67(18):8444–8449

    Article  PubMed  CAS  Google Scholar 

  30. Wu JY, Ernstoff MS, Hill JM, Cole B, Meehan KR (2006) Ex vivo expansion of non-MHC-restricted cytotoxic effector cells as adoptive immunotherapy for myeloma. Cytotherapy 8(2):141–148

    Article  PubMed  CAS  Google Scholar 

  31. Wu X, Shao Y, Tao Y, Ai G, Wei R, Meng X, Hou J, Han Y, Zhan F, Zheng J et al (2011) Proteasome inhibitor lactacystin augments natural killer cell cytotoxicity of myeloma via downregulation of HLA class I. Biochem Biophys Res Commun 415(1):187–192

    Article  PubMed  CAS  Google Scholar 

  32. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P et al (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128(2):192–203

    Article  PubMed  CAS  Google Scholar 

  33. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98(1):210–216

    Article  PubMed  CAS  Google Scholar 

  34. Chen X, Hu ZP, Yang XX, Huang M, Gao Y, Tang W, Chan SY, Dai X, Ye J, Ho PC et al (2006) Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int Immunopharmacol 6(3):499–508

    Article  PubMed  CAS  Google Scholar 

  35. Nielsen CH, Balachandran P, Christensen O, Pugh ND, Tamta H, Sufka KJ, Wu X, Walsted A, Schjørring-Thyssen M, Enevold C et al (2010) Enhancement of natural killer cell activity in healthy subjects by Immulina®, a Spirulina extract enriched for Braun-type lipoproteins. Planta Med 76(16):1802–1808

    Article  PubMed  CAS  Google Scholar 

  36. Thakur M, Connellan P, Deseo MA, Morris C, Praznik W, Loeppert R, Dixit VK (2012) Characterization and in vitro immunomodulatory screening of fructo-oligosaccharides of Asparagus racemosus Willd. Int J Biol Macromol 50(1):77–81

    Article  PubMed  CAS  Google Scholar 

  37. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426

    Article  PubMed  CAS  Google Scholar 

  38. Harrison SJ, Franklin IM, Campbell JD (2008) Enumeration of blood dendritic cells in patients with multiple myeloma at presentation and through therapy. Leuk Lymphoma 49(12):2272–2283

    Article  PubMed  CAS  Google Scholar 

  39. Martin-Ayuso M, Almeida J, Perez-Andres M, Cuello R, Galende J, Gonzalez-Fraile MI, Martin-Nunez G, Ortega F, Rodriguez MJ, San Miguel JF et al (2008) Peripheral blood dendritic cell subsets from patients with monoclonal gammopathies show an abnormal distribution and are functionally impaired. Oncologist 13(1):82–92

    Article  PubMed  Google Scholar 

  40. Brimnes MK, Svane IM, Johnsen HE (2006) Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma. Clin Exp Immunol 144(1):76–84

    Article  PubMed  CAS  Google Scholar 

  41. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107(6):2432–2439

    Article  PubMed  CAS  Google Scholar 

  42. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, Bianchi G, Podar K, Tai YT, Mitsiades C et al (2009) Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16(4):309–323

    Article  PubMed  CAS  Google Scholar 

  43. Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16(1):3–15

    Article  PubMed  CAS  Google Scholar 

  44. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, Fogli M, Ferri E, Della Cuna GR, Tura S et al (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100(1):230–237

    Article  PubMed  CAS  Google Scholar 

  45. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112(5):1557–1569

    Article  PubMed  CAS  Google Scholar 

  46. Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA, Markovic SN (2009) Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res 15(6):1931–1939

    Article  PubMed  CAS  Google Scholar 

  47. Szodoray P, Alex P, Brun JG, Centola M, Jonsson R (2004) Circulating cytokines in primary Sjogren’s syndrome determined by a multiplex cytokine array system. Scand J Immunol 59(6):592–599

    Article  PubMed  CAS  Google Scholar 

  48. Haabeth OA, Lorvik KB, Hammarstrom C, Donaldson IM, Haraldsen G, Bogen B, Corthay A (2011) Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun 2:240

    Article  PubMed  Google Scholar 

  49. Ghoneum M, Agrawal S (2011) Activation of human monocyte-derived dendritic cells in vitro by the biological response modifier arabinoxylan rice bran (MGN-3/Biobran). Int J Immunopathol Pharmacol 24(4):941–948

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the patients who participated in this study and are grateful to Gitka Sulikova and Janka Chovancova for their assistance with sample processing. The study was supported by research funding from Daiwa Pharmaceutical to J.S.

Conflict of interest

J.S. has received research funding from Daiwa Pharmaceutical. The remaining authors declare no competing conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Cholujova.

Additional information

The authors Dana Cholujova and Jana Jakubikova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cholujova, D., Jakubikova, J., Czako, B. et al. MGN-3 arabinoxylan rice bran modulates innate immunity in multiple myeloma patients. Cancer Immunol Immunother 62, 437–445 (2013). https://doi.org/10.1007/s00262-012-1344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1344-z

Keywords

Navigation