Skip to main content

Advertisement

Log in

Immunological effects of Taxol and Adryamicin in breast cancer patients

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Antineoplastic chemotherapy still consists in the major first-line therapeutics against cancer. Several reports have described the immunomodulatory effects of these drugs based on in vitro treatment, but no previous data are known about these effects in patients and its association with immunological-mediated toxicity. In this study, we first characterize the immunological profile of advanced breast cancer patients treated with doxorubicin and paclitaxel protocols, immediately after chemotherapy infusion. Our findings included an immediate plasmatic reduction in IL-1, IL-10, and TNF-α levels in doxorubicin-treated patients, as well as high levels of IL-10 in paclitaxel patients. Further, it was demonstrated that both drugs led to leukocytes oxidative burst impairment. In vitro analysis was performed exposing healthy blood to both chemotherapics in the same concentration and time of exposition of patients, resulting in low IL-10 and high IL-1β in doxorubicin exposition, as low TNF-α and high IL-1 in paclitaxel treatment. Nitric oxide levels were not altered in both in vivo and in vitro treatments. In conclusion, our data revealed for the first time that the immediate effects of chemotherapy could be mediated by cytokines signaling in patients and that the results observed in patients could be a resultant of host immune cells activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fargeot P, Guerin J (1984) Role of chemotherapy in adjuvant treatment of breast cancer: modulation of the immune status. Bull Cancer 71(4):346–353

    PubMed  CAS  Google Scholar 

  2. Casares N, Peguignot MO, Tesniere A, Ghiringhelli F, Roux S, Chapul N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Métivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701

    Article  PubMed  CAS  Google Scholar 

  3. Dorsey JF, Mintz A, Tian X, Dowling ML, Plastaras JP, Dicker DT, Kao GD, El-Deiry WS (2009) Tumor necrosis factor-related aposptosis-inducing ligand (TRAIL) and paclitaxel have cooperative in vivo effects against glioblastoma multiforme cells. Mol Cancer Ther 8(12):3285–3295

    Article  PubMed  CAS  Google Scholar 

  4. Kaneno R, Shurin GV, Torukova IL, Shurin MR (2009) Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med 7:58

    Article  PubMed  Google Scholar 

  5. Joo HG (2003) Altered maturation of dendritic cells by taxol, an anticancer drug. J Vet Sci 4(3):229–234

    PubMed  Google Scholar 

  6. Manthey CL, Perera PY, Salkowski CA, Vogel SN (1994) Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol 152(2):825–831

    PubMed  CAS  Google Scholar 

  7. Brignoni C, Guitierrez M, Metfi F, Brain E, Jarcau R, Cvitkovic F, Bousetta N, Medioni J, Gligorov J, Grygar C, Marcu M, Triebel F (2010) First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med 8:71

    Article  Google Scholar 

  8. Mullins DW, Burguer CJ, Elgert KD (1999) Paclitaxel enhances macrophage IL-12 production in tumor-bearing hosts through nitric oxide. J Immunol 162:6811–6818

    PubMed  CAS  Google Scholar 

  9. Denkert C, Darb-Esfahani S, Loibl S, Anagnostopoulos I, Johrens K (2011) Anti-cancer immune response mechanisms in neoadjuvant and targeted therapy. Semin Immunopathol 33(4):341–351

    Article  PubMed  CAS  Google Scholar 

  10. Pae HO, Jun CD, Yoo JC, Kwak HJ, Lee SJ, Kook YA, Park RK, Chung HT (1998) Enhancing and priming of macrophages for superoxide anion production by taxol. Immunopharmacol Immunotoxicol 20(1):27–37

    Article  PubMed  CAS  Google Scholar 

  11. Kim YM, Paik SG (2005) Induction of expression of inducible nitric oxide synthase by Taxol in murine macrophage cells. Biochem Biophys Res Commun 326(2):410–416

    Article  PubMed  CAS  Google Scholar 

  12. Zaks-Zilberman M, Zaks TZ, Vogel SN (2001) Induction of proinflammatory and chemokine genes by lipopolysaccharide and paclitaxel (Taxol) in murine and human breast cancer cells lines. Cytokine 15(3):156–165

    Article  PubMed  CAS  Google Scholar 

  13. Jun CD, Choi BM, Kim HM, Chung HT (1995) Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages. J Immunol 154(12):6541–6547

    PubMed  CAS  Google Scholar 

  14. Kirikae T, Ojima I, Kirikae F, Ma Z, Kuduk SD, Slater JC, Takeuchi CS, Bounaud PY, Nakano M (1996) Structural requirements of taxoids for nitric oxide and tumor necrosis factor production by murine macrophages. Biochem Biophys Res Commun 227(1):227–235

    Article  PubMed  CAS  Google Scholar 

  15. Mullins DW, Alleva DG, Burger CJ, Elgert KD (1997) Taxol, a microtubule-stabilizing antineoplastic agent, differentially regulates normal and tumor-bearing host macrophage nitric oxide production. Immunopharmacology 37(1):63–73

    Article  PubMed  Google Scholar 

  16. Fawcett H, Mader JS, Robichaud M, Giacomantonio C, Hoskin DW (2005) Contribution of reactive oxygen species and caspase-3 to apoptosis and attenuated ICAM-1 expression by paclitaxel-treated MDA-MB-435 breast carcinoma cells. Int J Oncol 27(6):1717–1726

    PubMed  CAS  Google Scholar 

  17. Czuba ZP, Król W, Hasinski P, Nowowiejska A (1998) The effects of taxol (paclitaxel) on chemiluminescence of neutrophils, macrophages and J.774.2 cell line. Acta Biochim Pol 45(1):103–106

    Google Scholar 

  18. De Rossi T, Panis C, Victorino VJ, Freitas LF, Herrera ACSA, Cecchini R (2009) Breast cancer and oxidative stress in chemotherapy. Appl Cancer Res 29(4):150–156

    Google Scholar 

  19. Elsea CR, Roberts DA, Druker BJ, Wood LJ (2008) Inhibition of p38 MAPK suppresses inflammatory cytokine induction by etoposide, 5-fluouracil and doxorubicin, without affecting tumoricidal activity. PLoS ONE 3(6):e2355

    Article  PubMed  Google Scholar 

  20. Mills PJ, Ancoli-Israel S, Parker B, Natarajan L, Hong S, Jain S, Sadler GR, von Kanel R (2008) Predictors of inflammation in response to anthracycline-based chemotherapy for breast cancer. Brain Behav Immun 22(1):98–104

    Article  PubMed  CAS  Google Scholar 

  21. Byrd-Leiffer CA, Block EF, Takeda K, Akira S, Ding A (2001) The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 31(8):2448–2457

    Article  Google Scholar 

  22. Palsson-Mcdermott EM, J’Oneill LAJ (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor 4. Immunology 113:153–162

    Article  PubMed  CAS  Google Scholar 

  23. Zielinski CC, Muller C, Kubista E, Staffen A, Eibl MM (1990) Effects of adjuvant chemotherapy on specific and non-specific immune mechanisms. Acta Med Austriaca 17(1):11–14

    PubMed  CAS  Google Scholar 

  24. Kang DH, Weaver MT, Park NJ, Smith B, McArdle T, Carpenter J (2009) Significant impairment in immune recovery following cancer treatment. Nurs Res 58(2):105–114

    Article  PubMed  Google Scholar 

  25. Beitsch P, Lotzová E, Hortobagyi G, Pollock R (1994) Natural immunity in breast cancer patients during neoadjuvant chemotherapy and after surgery. Surg Oncol 3(4):211–219

    Article  PubMed  CAS  Google Scholar 

  26. Chen Y, Jungsuwadee P, Vore M, Butterfield DA, Clair DKS (2007) Collateral damage in chemotherapy: oxidative stress and nontargeted tissues. Mol Interv 7(3):147–156

    Article  PubMed  CAS  Google Scholar 

  27. Panis C, Herrera ACSA, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simão NA, Cecchini AL, Cecchini R (2011) Oxidative stress and hematologycal profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat. doi:10.1007/s10549-011-1693-x

  28. Mukhergee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK (2003) Protection against acute adryamicin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-α expression. BMC Pharmacol 3:16–25

    Article  Google Scholar 

  29. Panis C, Mazzuco TL, Costa CZ, Victorino VJ, Tatakihara VL, Yamauchi LM, Yamada-Ogatta SF, Cecchini R, Rizzo LV, Pinge-Filho P (2011) Trypanosoma cruzi: effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide and iNOS expression in cardiac tissue in teh acute phase of infection in mice. Exp Parasitol 127(1):58–65

    Article  PubMed  CAS  Google Scholar 

  30. Kukovetz EM, Bratschitcch G, Hofer HP, Egger G, Schaur RJ (1997) Influence of age on the release of reactive oxygen species by phagocytes as measured by a whole blood chemiluminescence assay. Free Rad Biol Med 22(3):433–438

    Article  PubMed  CAS  Google Scholar 

  31. Galon J, Costes A, Sanchez-Cabo F, Kirilovzki A, Mlecnick B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PR, Trajanoski Z, Fridman WH, Pages F (2006) Type, density and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  32. Leek RD, Landers R, Fox SB, Ng F, Harris AL, Lewis CE (1998) Association of tumor necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. British J Cancer 77(12):2246–2251

    Article  CAS  Google Scholar 

  33. Reed JR, Leon RP, Hall MK, Schwertfeger KL (2009) Interleukin 1-beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumorigenesis. Breast Cancer Res 11:R21

    Article  PubMed  Google Scholar 

  34. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracyclin antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  PubMed  CAS  Google Scholar 

  35. Brandão HN, David J, Couto RD, Nascimento JAP (2010) Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. Quim Nova 33(6):1359–1369

    Article  Google Scholar 

  36. Denardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptative and innate immune cells during breast cancer progression. Breast Cancer Res 9:212

    Article  PubMed  Google Scholar 

  37. Allen JN, Moore AS, Wewewrs MD (1993) Taxol enhances but not induce interleukin 1-β and tumor necrosis factor-α production. J Lab Clin Med 122:374–381

    PubMed  CAS  Google Scholar 

  38. Choi SC, Oh HM, Park JS, Han WC, Yoon KH, Kim TH, Yun KJ, Kim EC, Nah YH, Cha YN, Chung GHT, Jun CD (2003) Soluble factor from urine bladder tumor-2 cell elevates nitric oxide production in macrophages and enhances the taxol-mediated macrophage cytotoxicity on tumor cells. Cancer Invest 21(5):708–719

    Article  PubMed  CAS  Google Scholar 

  39. Santos-Silva MC, Freitas MS, Assreuy J (2006) Involvement of NF-κB and glutathione in cytotoxic effects of nitric oxide and taxol on human leukemia cells. Leukemia Res 30(2):145–152

    Article  CAS  Google Scholar 

  40. Jia L, Schweizer J, Wang Y, Cerna C, Wong H, Revilla M (2003) Effect of nitric oxide on cytotoxicity of taxol: enhanced taxol transcellular permeability. Biochem Pharmacol 66(11):2193–2199

    Article  PubMed  CAS  Google Scholar 

  41. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University, New York

    Google Scholar 

  42. Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 141:312

    CAS  Google Scholar 

  43. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    PubMed  CAS  Google Scholar 

  44. Young RC, Ozols RF, Myers CE (1981) The anthracycline antineoplastic drugs. N Engl J Med 305:139–153

    Article  PubMed  CAS  Google Scholar 

  45. Scripture CD, Figg WD, Spareboom A (2005) Paclitaxel chemotherapy: from empiricism to a mechanism-based formulation strategy. Ther Clin Risk Manag 1(2):107–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jesus Vargas for excellent technical assistance, Fundação Araucária and CAPEs for providing financial support.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Panis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panis, C., Lemos, L.G.T., Victorino, V.J. et al. Immunological effects of Taxol and Adryamicin in breast cancer patients. Cancer Immunol Immunother 61, 481–488 (2012). https://doi.org/10.1007/s00262-011-1117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1117-0

Keywords

Navigation