Skip to main content

Advertisement

Log in

Therapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptide

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cationic antimicrobial peptides (CAPs) exhibit promising anticancer activities. In the present study, we have examined the in vivo antitumoral effects of a 9-mer peptide, LTX-302, which is derived from the CAP bovine lactoferricin (LfcinB). A20 B cell lymphomas of BALB/c origin were established by subcutaneous inoculation in syngeneic mice. Intratumoral LTX-302 injection resulted in tumor necrosis and infiltration of inflammatory cells followed by complete regression of the tumors in the majority of the animals. This effect was T cell dependent, since the intervention was inefficient in nude mice. Successfully treated mice were protected against rechallenge with A20 cells, but not against Meth A sarcoma cells. Tumor resistance could be adoptively transferred with spleen cells from LTX-302-treated mice. Resistance was abrogated by depletion of T lymphocytes, or either the CD4+ or CD8+ T cell subsets. Taken together, these data suggest that LTX-302 treatment induced long-term, specific cellular immunity against the A20 lymphoma and that both CD4+ and CD8+ T cells were required. Thus, intratumoral administration of lytic peptide might, in addition to providing local tumor control, confer a novel strategy for therapeutic vaccination against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  2. Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946

    Article  CAS  PubMed  Google Scholar 

  3. Papo N, Shai Y (2005) Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 62:784–790

    Article  CAS  PubMed  Google Scholar 

  4. Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, Yamakawa M (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30:660–668

    Article  CAS  PubMed  Google Scholar 

  5. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066

    CAS  PubMed  Google Scholar 

  6. Dobrzynska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z (2005) Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem 276:113–119

    Article  CAS  PubMed  Google Scholar 

  7. Burdick MD, Harris A, Reid CJ, Iwamura T, Hollingsworth MA (1997) Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J Biol Chem 272:24198–24202

    Article  CAS  PubMed  Google Scholar 

  8. Yoon WH, Park HD, Lim K, Hwang BD (1996) Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells. Biochem Biophys Res Commun 222:694–699

    Article  CAS  PubMed  Google Scholar 

  9. Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4:612–624

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Xu X, Hong S, Chen J, Liu N, Underhill CB, Creswell K, Zhang L (2001) RGD-Tachyplesin inhibits tumor growth. Cancer Res 61:2434–2438

    CAS  PubMed  Google Scholar 

  11. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  PubMed  Google Scholar 

  12. Risso A, Braidot E, Sordano MC, Vianello A, Macri F, Skerlavaj B, Zanetti M, Gennaro R, Bernardi P (2002) BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 22:1926–1935

    Article  CAS  PubMed  Google Scholar 

  13. Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ (2003) In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 24:945–953

    Article  CAS  PubMed  Google Scholar 

  14. Sharom FJ, DiDiodato G, Yu X, Ashbourne KJ (1995) Interaction of the P-glycoprotein multidrug transporter with peptides and ionophores. J Biol Chem 270:10334–10341

    Article  CAS  PubMed  Google Scholar 

  15. Johnstone SA, Gelmon K, Mayer LD, Hancock RE, Bally MB (2000) In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 15:151–160

    CAS  PubMed  Google Scholar 

  16. Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Lokke C, Ponthan F, Johnsen JI, Sveinbjornsson B, Kogner P, Flaegstad T, Rekdal O (2006) The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer 119:493–500

    Article  CAS  PubMed  Google Scholar 

  17. Eliassen LT, Berge G, Sveinbjornsson B, Svendsen JS, Vorland LH, Rekdal O (2002) Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res 22:2703–2710

    CAS  PubMed  Google Scholar 

  18. Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki K, Azuma I (1997) Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn J Cancer Res 88:184–190

    CAS  PubMed  Google Scholar 

  19. Eliassen LT, Haug BE, Berge G, Rekdal O (2003) Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications. J Pept Sci 9:510–517

    Article  CAS  PubMed  Google Scholar 

  20. Yang N, Lejon T, Rekdal O (2003) Antitumour activity and specificity as a function of substitutions in the lipophilic sector of helical lactoferrin-derived peptide. J Pept Sci 9:300–311

    Article  CAS  PubMed  Google Scholar 

  21. Yang N, Stensen W, Svendsen JS, Rekdal O (2002) Enhanced antitumor activity and selectivity of lactoferrin-derived peptides. J Pept Res 60:187–197

    Article  CAS  PubMed  Google Scholar 

  22. Yang N, Strom MB, Mekonnen SM, Svendsen JS, Rekdal O (2004) The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. J Pept Sci 10:37–46

    Article  CAS  PubMed  Google Scholar 

  23. Strom MB, Rekdal O, Svendsen JS (2000) Antibacterial activity of 15-residue lactoferricin derivatives. J Pept Res 56:265–274

    Article  CAS  PubMed  Google Scholar 

  24. Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R (1979) Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol 122:549–554

    CAS  PubMed  Google Scholar 

  25. Sveinbjornsson B, Olsen R, Seternes OM, Seljelid R (1996) Macrophage cytotoxicity against murine meth A sarcoma involves nitric oxide-mediated apoptosis. Biochem Biophys Res Commun 223:643–649

    Article  CAS  PubMed  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  27. Bozzola JJ, Russell LD (1992) Specimen preparation for scanning electron microscopy. In: Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston, pp 48–69

  28. Bozzola JJ, Russell LD. 1992. Specimen preparation for transmission electron microscopy. In: Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston, pp 16–45

  29. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  30. Leuschner C, Enright FM, Gawronska B, Hansel W (2003) Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells in vitro and in vivo. Breast Cancer Res Treat 78:17–27

    Article  CAS  PubMed  Google Scholar 

  31. Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar Z, Degani H, Shai Y (2006) Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide. Cancer Res 66:5371–5378

    Article  CAS  PubMed  Google Scholar 

  32. Papo N, Braunstein A, Eshhar Z, Shai Y (2004) Suppression of human prostate tumor growth in mice by a cytolytic d-, l-amino acid peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res 64:5779–5786

    Article  CAS  PubMed  Google Scholar 

  33. Soballe PW, Maloy WL, Myrga ML, Jacob LS, Herlyn M (1995) Experimental local therapy of human melanoma with lytic magainin peptides. Int J Cancer 60:280–284

    Article  CAS  PubMed  Google Scholar 

  34. Baker MA, Maloy WL, Zasloff M, Jacob LS (1993) Anticancer efficacy of magainin2 and analogue peptides. Cancer Res 53:3052–3057

    CAS  PubMed  Google Scholar 

  35. Rodrigues EG, Dobroff AS, Cavarsan CF, Paschoalin T, Nimrichter L, Mortara RA, Santos EL, Fazio MA, Miranda A, Daffre S, Travassos LR (2008) Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 10:61–68

    Article  CAS  PubMed  Google Scholar 

  36. Mai JC, Mi Z, Kim SH, Ng B, Robbins PD (2001) A proapoptotic peptide for the treatment of solid tumors. Cancer Res 61:7709–7712

    CAS  PubMed  Google Scholar 

  37. den Brok MH, Sutmuller RP, van der Voort R, Bennink EJ, Figdor CG, Ruers TJ, Adema GJ (2004) In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 64:4024–4029

    Article  Google Scholar 

  38. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255

    Article  CAS  PubMed  Google Scholar 

  39. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434

    Article  CAS  PubMed  Google Scholar 

  40. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  41. Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C, Bianchi ME, Manfredi AA (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Norwegian Research Council and Lytix Biopharma. We thank Ragnhild Osnes for her technical assistance at the Animal Department. The staff at the Department of Electron Microscopy is acknowledged for their assistance. Kristel Berg and Inger Lindin at the Tunor Biology Research Group are acknowledged for their technical assistance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øystein Rekdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berge, G., Eliassen, L.T., Camilio, K.A. et al. Therapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptide. Cancer Immunol Immunother 59, 1285–1294 (2010). https://doi.org/10.1007/s00262-010-0857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0857-6

Keywords

Navigation