Skip to main content
Log in

Peri-tumoral hyperintensity on hepatobiliary phase of gadoxetic acid-enhanced MRI in hepatocellular carcinomas: correlation with peri-tumoral hyperplasia and its pathological features

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Peri-tumoral hyperintensity (P-hyperintensity) is occasionally seen in hepatocellular carcinoma (HCC) on the hepatobiliary (HB) phase of gadoxetic acid-enhanced MRI (EOB-MRI). A recent study reported peri-tumoral hyperplasia (P-hyperplasia) associated with over-expression of glutamine synthetase (GS) in HCC or metastatic carcinoma. The aim of this study was to analyze the correlation between P-hyperintensity on the HB phase and GS expression indicating P-hyperplasia and reveal its pathological features.

Methods

Seventy-seven surgically resected HCCs from 68 patients were analyzed. The grade of P-hyperintensity on HB phase was divided according to the degree of the peri-tumoral hyperintense signal: grade 0 (no P-hyperintensity), grade 1 (less than 50% of the tumor border), grade 2 (50%–80%), grade 3 (80%–100%). Immunohistochemical staining for GS and organic anion transporter polypeptides (OATP)1B3 was performed. The relationships among P-hyperplasia (peri-tumoral GS expression) and OATP1B3 expression, P-hyperintensity, and pathological features of the tumor were analyzed.

Results

Thirty-four HCCs were classified as P-hyperintensity grade 0, 29 HCCs as grade 1,10 nodules as grade 2, and 4 HCCs as grade 3. P-hyperplasia was observed in 3/34 (8.8%) P-hyperintensity grade 0, 16/29 (55.2%) grade 1, 9/10 (90%) grade 2, and 4/4 (100%) grade 3. The incidence of P-hyperplasia was significantly increased in P-hyperintensity grades 1–3 compared with grade 0 (p < 0.0001). Hepatocytes in all P-hyperplasia sites demonstrated definite OATP1B3 expression. Microscopic hepatic venous invasion was significantly increased in P-hyperintensity-positive HCCs compared with negative HCCs (p = 0.0017).

Conclusions

P-hyperintensity on HB phase in HCC may indicate p-hyperplasia with GS and OATP1B3 expression and a higher incidence of microscopic hepatic venous invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

P-hyperintensity:

Peri-tumoral hyperintensity

HCC:

Hepatocellular carcinoma

HB:

Hepatobiliary

EOB-MRI:

Gadoxetic acid-enhanced MRI

P-hyperplasia:

Peri-tumoral hyperplasia

GS:

Glutamine synthetase

OATP:

Organic anion-transporting polypeptide

MR:

Magnetic resonance

HCA:

Hepatocellular adenoma

HNF:

Hepatocyte nuclear factor

References

  1. Schuhmann-Giampieri G, Schmitt-Willich H, Press W, et al. (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183(1):59–64

    Article  PubMed  CAS  Google Scholar 

  2. Bluemke D, Sahani D, Amendola M, et al. (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237(1):89–98

    Article  PubMed  Google Scholar 

  3. Huppertz A, Balzer T, Blakeborough A, et al. (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230(1):266–275

    Article  PubMed  Google Scholar 

  4. Fu GL, Du Y, Zee CS, et al. (2012) Gadobenate dimeglumine-enhanced liver magnetic resonance imaging: value of hepatobiliary phase for the detection of focal liver lesions. J Comput Assist Tomogr 36(1):14–19. https://doi.org/10.1097/RCT.0b013e31823dc139

    Article  PubMed  Google Scholar 

  5. Purysko AS, Remer EM, Coppa CP, et al. (2012) Characteristics and distinguishing features of hepatocellular adenoma and focal nodular hyperplasia on gadoxetate disodium-enhanced MRI. AJR Am J Roentgenol 198(1):115–123. https://doi.org/10.2214/AJR.11.6836

    Article  PubMed  Google Scholar 

  6. Onishi H, Kim T, Imai Y, et al. (2012) Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Eur Radiol 22(4):845–854. https://doi.org/10.1007/s00330-011-2316-y

    Article  PubMed  Google Scholar 

  7. Chung YE, Kim MJ, Kim YE, et al. (2013) Characterization of incidental liver lesions: comparison of multidetector CT versus Gd-EOB-DTPA-enhanced MR imaging. PloS ONE 8(6):e66141. https://doi.org/10.1371/journal.pone.0066141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bottcher J, Hansch A, Pfeil A, et al. (2013) Detection and classification of different liver lesions: comparison of Gd-EOB-DTPA-enhanced MRI versus multiphasic spiral CT in a clinical single centre investigation. Eur J Radiol 82(11):1860–1869. https://doi.org/10.1016/j.ejrad.2013.06.013

    Article  PubMed  Google Scholar 

  9. Narita M, Hatano E, Arizono S, et al. (2009) Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol 44(7):793–798

    Article  PubMed  CAS  Google Scholar 

  10. Kitao A, Zen Y, Matsui O, et al. (2010) Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging–correlation with molecular transporters and histopathologic features. Radiology 256(3):817–826. https://doi.org/10.1148/radiol.10092214

    Article  PubMed  Google Scholar 

  11. Ba-Ssalamah A, Antunes C, Feier D, et al. (2015) Morphologic and molecular features of hepatocellular adenoma with gadoxetic acid-enhanced MR imaging. Radiology 277(1):104–113. https://doi.org/10.1148/radiol.2015142366

    Article  PubMed  Google Scholar 

  12. Fukusato T, Soejima Y, Kondo F, et al. (2015) Preserved or enhanced OATP1B3 expression in hepatocellular adenoma subtypes with nuclear accumulation of beta-catenin. Hepatol Res 45(10):E32–42. https://doi.org/10.1111/hepr.12453

    Article  PubMed  CAS  Google Scholar 

  13. Yoneda N, Matsui O, Kitao A, et al. (2012) Beta-catenin-activated hepatocellular adenoma showing hyperintensity on hepatobiliary-phase gadoxetic-enhanced magnetic resonance imaging and overexpression of OATP8. Jpn J Radiol 30(9):777–782. https://doi.org/10.1007/s11604-012-0115-2

    Article  PubMed  CAS  Google Scholar 

  14. Yoneda N, Matsui O, Kitao A, et al. (2012) Hepatocyte transporter expression in FNH and FNH-like nodule: correlation with signal intensity on gadoxetic acid enhanced magnetic resonance images. Jpn J Radiol 30(6):499–508. https://doi.org/10.1007/s11604-012-0085-4

    Article  PubMed  CAS  Google Scholar 

  15. Kitao A, Matsui O, Yoneda N, et al. (2011) The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol 21(10):2056–2066. https://doi.org/10.1007/s00330-011-2165-8

    Article  PubMed  Google Scholar 

  16. Yoneda N, Matsui O, Kitao A, et al. (2016) Benign hepatocellular nodules: hepatobiliary phase of gadoxetic acid-enhanced MR imaging based on molecular background. Radiographics 36(7):2010–2027. https://doi.org/10.1148/rg.2016160037

    Article  PubMed  Google Scholar 

  17. Benhamouche S, Decaens T, Godard C, et al. (2006) Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell 10(6):759–770. https://doi.org/10.1016/j.devcel.2006.03.015

    Article  PubMed  CAS  Google Scholar 

  18. Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M (2006) Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43(4):817–825. https://doi.org/10.1002/hep.21131

    Article  PubMed  CAS  Google Scholar 

  19. Colletti M, Cicchini C, Conigliaro A, et al. (2009) Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology 137(2):660–672. https://doi.org/10.1053/j.gastro.2009.05.038

    Article  PubMed  CAS  Google Scholar 

  20. Monga SP (2015) β-Catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148(7):1294–1310. https://doi.org/10.1053/j.gastro.2015.02.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sekine S, Ogawa R, Ojima H, Kanai Y (2011) Expression of SLCO1B3 is associated with intratumoral cholestasis and CTNNB1 mutations in hepatocellular carcinoma. Cancer Sci 102(9):1742–1747. https://doi.org/10.1111/j.1349-7006.2011.01990.x

    Article  PubMed  CAS  Google Scholar 

  22. Ueno A, Masugi Y, Yamazaki K, et al. (2014) OATP1B3 expression is strongly associated with Wnt/beta-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61(5):1080–1087. https://doi.org/10.1016/j.jhep.2014.06.008

    Article  PubMed  CAS  Google Scholar 

  23. Kitao A, Matsui O, Yoneda N, et al. (2012) Hypervascular hepatocellular carcinoma: correlation between biologic features and signal intensity on gadoxetic acid-enhanced MR images. Radiology 265(3):780–789. https://doi.org/10.1148/radiol.12120226

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yamashita T, Kitao A, Matsui O, et al. (2014) Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology 60(5):1674–1685. https://doi.org/10.1002/hep.27093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Arnason T, Fleming KE, Wanless IR (2013) Peritumoral hyperplasia of the liver: a response to portal vein invasion by hypervascular neoplasms. Histopathology 62(3):458–464. https://doi.org/10.1111/his.12032

    Article  PubMed  Google Scholar 

  26. Kim KA, Kim MJ, Jeon HM, et al. (2012) Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images. J Magn Reson Imaging 35(3):629–634. https://doi.org/10.1002/jmri.22876

    Article  PubMed  Google Scholar 

  27. Kitao A, Zen Y, Matsui O, Gabata T, Nakanuma Y (2009) Hepatocarcinogenesis: multistep changes of drainage vessels at CT during arterial portography and hepatic arteriography–radiologic-pathologic correlation. Radiology 252(2):605–614

    Article  PubMed  Google Scholar 

  28. International Consensus Group for Hepatocellular Neoplasia. The International Consensus Group for Hepatocellular N (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49(2):658–664. https://doi.org/10.1002/hep.22709

    Article  Google Scholar 

  29. Bosman FT, World Health Organization., International Agency for Research on Cancer (2010) WHO classification of tumours of the digestive system. World Health Organization classification of tumours, vol. 3, 4th edn. Lyon: International Agency for Research on Cancer

    Google Scholar 

  30. Japan LCSGo (2010) General rules for the clinical and pathological study of primary liver cancer., 3rd ed. edn. Kanehara, Tokyo, Japan

  31. Ichida F, Tsuji T, Omata M, et al. (1996) New Inuyama classification; New criteria for histological assessment of chronic hepatitis. Int Hepatol Commun 6(2):112–119. https://doi.org/10.1016/S0928-4346(96)00325-8

    Article  Google Scholar 

  32. Vander Borght S, Libbrecht L, Blokzijl H, et al. (2005) Diagnostic and pathogenetic implications of the expression of hepatic transporters in focal lesions occurring in normal liver. J Pathol 207(4):471–482. https://doi.org/10.1002/path.1852

    Article  PubMed  CAS  Google Scholar 

  33. Fleming KE, Wanless IR (2013) Glutamine synthetase expression in activated hepatocyte progenitor cells and loss of hepatocellular expression in congestion and cirrhosis. Liver Int 33(4):525–534. https://doi.org/10.1111/liv.12099

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihide Yoneda.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Our institutional review board approved this retrospective study and waived the requirement for informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, N., Matsui, O., Kitao, A. et al. Peri-tumoral hyperintensity on hepatobiliary phase of gadoxetic acid-enhanced MRI in hepatocellular carcinomas: correlation with peri-tumoral hyperplasia and its pathological features. Abdom Radiol 43, 2103–2112 (2018). https://doi.org/10.1007/s00261-017-1437-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1437-4

Keywords

Navigation