Skip to main content

Advertisement

Log in

First imaging results of an intraindividual comparison of 11C-acetate and 18F-fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-Fluorocholine (FCH) and 11C-acetate (ACE) PET are widely used for detection of recurrent prostate cancer (PC). We present the first results of a comparative, prospective PET/CT study of both tracers evaluated in the same patients presenting with recurrence and low PSA to compare the diagnostic information provided by the two tracers.

Methods

The study group comprised 23 patients studied for a rising PSA level after radical prostatectomy (RP, 7 patients, PSA ≤3 ng/ml), curative radiotherapy (RT, 7 patients, PSA ≤5 ng/ml) or RP and salvage RT (9 patients, PSA ≤5 ng/ml). Both FCH and ACE PET/CT scans were performed in a random sequence a median of 4 days (range 0 to 11 days) apart. FCH PET/CT was started at injection (307 ± 16 MBq) with a 10-min dynamic acquisition of the prostate bed, followed by a whole-body PET scan and late (45 min) imaging of the pelvis. ACE PET/CT was performed as a double whole-body PET scan starting 5 and 22 min after injection (994 ± 72 MBq), and a late view (45 min) of the prostate bed. PET/CT scans were blindly reviewed by two independent pairs of two experienced nuclear medicine physicians, discordant subgroup results being discussed to reach a consensus for positive, negative end equivocal results.

Results

PET results were concordant in 88 out of 92 local, regional and distant findings (Cohen’s kappa 0.929). In particular, results were concordant in all patients concerning local status, bone metastases and distant findings. Lymph-node results were concordant in 19 patients and different in 4 patients. On a per-patient basis results were concordant in 22 of 23 patients (14 positive, 5 negative and 3 equivocal). In only one patient was ACE PET/CT positive for nodal metastases while FCH PET/CT was overall negative; interestingly, the ACE-positive and FCH-negative lymph nodes became positive in a second FCH PET/CT scan performed a few months later.

Conclusion

Overall, ACE and FCH PET/CT showed excellent concordance, on both a per-lesion and a per-patient basis, suggesting that both tracers perform equally for recurrent prostate cancer staging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fox JJ, Schoder H, Larson SM. Molecular imaging of prostate cancer. Curr Opin Urol. 2012;22:320–7.

    Article  PubMed  Google Scholar 

  2. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med. 2011;52:81–9.

    Article  PubMed  Google Scholar 

  3. Ward JF, Moul JW. Biochemical recurrence after definitive prostate cancer therapy. Part I: defining and localizing biochemical recurrence of prostate cancer. Curr Opin Urol. 2005;15:181–6.

    Article  PubMed  Google Scholar 

  4. Ward JF, Sebo TJ, Blute ML, Zincke H. Salvage surgery for radiorecurrent prostate cancer: contemporary outcomes. J Urol. 2005;173:1156–60.

    Article  PubMed  Google Scholar 

  5. Freedland SJ, Sutter ME, Dorey F, Aronson WJ. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology. 2003;61:365–9.

    Article  PubMed  Google Scholar 

  6. Abramowitz MC, Li T, Buyyounouski MK, Ross E, Uzzo RG, Pollack A, et al. The Phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer. 2008;112:55–60.

    Article  PubMed  Google Scholar 

  7. Schick U, Jorcano S, Nouet P, Rouzaud M, Vees H, Zilli T, et al. Androgen deprivation and high-dose radiotherapy for oligometastatic prostate cancer patients with less than five regional and/or distant metastases. Acta Oncol. 2013. doi:10.3109/0284186X.2013.764010

  8. Brogsitter C, Zophel K, Kotzerke J. F-Choline, C-choline and C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40 Suppl 1:18–27.

    Article  CAS  Google Scholar 

  9. Giovacchini G, Picchio M, Garcia-Parra R, Mapelli P, Briganti A, Montorsi F, et al. [11C]choline positron emission tomography/computerized tomography for early detection of prostate cancer recurrence in patients with low increasing prostate specific antigen. J Urol. 2013;189:105–10.

    Article  PubMed  Google Scholar 

  10. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2:33–47.

    PubMed  CAS  Google Scholar 

  11. Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging. 2007;34:185–96.

    Article  PubMed  Google Scholar 

  12. Vees H, Buchegger F, Albrecht S, Khan H, Husarik D, Zaidi H, et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int. 2007;99:1415–20.

    Article  PubMed  CAS  Google Scholar 

  13. Steiner C, Vees H, Zaidi H, Berrebi O, Kossovsky MP, Khan GH, et al. Three-phase (18)F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence. Nucl Med. 2009;48:1–9.

    Google Scholar 

  14. Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Miralbell R, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39:936–43.

    Article  PubMed  CAS  Google Scholar 

  15. Michel C, Sibomana M, Boi A, Bernard X, Lonneux M, Defrise M, et al. Preserving Poisson characteristics of PET data with weighted OSEM reconstruction. Proceedings IEEE Nuclear Science Symposium and Medical Imaging Conference, vol 2; 1998. p 1323–29.

  16. Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys. 2004;59:1295–300.

    Article  PubMed  CAS  Google Scholar 

  17. Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70:213–20.

    Article  PubMed  CAS  Google Scholar 

  18. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  PubMed  CAS  Google Scholar 

  19. Kotzerke J, Volkmer BG, Glatting G, van den HJ, Gschwend JE, Messer P, et al. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nucl Med. 2003;42:25–30.

    CAS  Google Scholar 

  20. Orevi M, Klein M, Mishani E, Chisin R, Freedman N, Gofrit ON. 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med. 2012;37:e67–72.

    Article  PubMed  Google Scholar 

  21. Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24:2513–9.

    Article  PubMed  Google Scholar 

  22. Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol. 2004;31:859–65.

    Article  PubMed  CAS  Google Scholar 

  23. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28:117–22.

    Article  PubMed  CAS  Google Scholar 

  24. Okuda T, Osawa C, Yamada H, Hayashi K, Nishikawa S, Ushio T, et al. Transmembrane topology and oligomeric structure of the high-affinity choline transporter. J Biol Chem. 2012;287:42826–34.

    Article  PubMed  CAS  Google Scholar 

  25. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187–99.

    PubMed  CAS  Google Scholar 

  26. Herrmann J, Hermes R, Breves G. Transepithelial transport and intraepithelial metabolism of short-chain fatty acids (SCFA) in the porcine proximal colon are influenced by SCFA concentration and luminal pH. Comp Biochem Physiol Part A. 2011;158:169–76.

    Article  Google Scholar 

  27. Contractor K, Challapalli A, Barwick T, Winkler M, Hellawell G, Hazell S, et al. Use of [11C]choline PET-CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin Cancer Res. 2011;17:7673–83.

    Article  PubMed  CAS  Google Scholar 

  28. Henes CG, Bergmann SR, Walsh MN, Sobel BE, Geltman EM. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med. 1989;30:1489–99.

    PubMed  CAS  Google Scholar 

  29. Buchegger F, Ratib O, Willi J-P, Steiner C, Seimbille Y, Zaidi H, et al. [11C]acetate PET/CT visualizes skeletal muscle exercise participation, impaired function and recovery after hip arthroplasty; first results. Mol Imaging Biol. 2011;13:793–9.

    Article  PubMed  Google Scholar 

  30. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    PubMed  CAS  Google Scholar 

  31. Marzola MC, Chondrogiannis S, Ferretti A, Grassetto G, Rampin L, Massaro A, et al. Role of 18F-choline PET/CT in biochemically relapsed prostate cancer after radical prostatectomy: correlation with trigger PSA, PSA velocity, PSA doubling time, and metastatic distribution. Clin Nucl Med. 2013;38:e26–32

    Article  PubMed  Google Scholar 

  32. Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med. 2008;113:895–904.

    Article  PubMed  CAS  Google Scholar 

  33. Massaro A, Ferretti A, Secchiero C, Cittadin S, Milan E, Tamiso L, et al. Optimising (18)F-choline PET/CT acquisition protocol in prostate cancer patients. N Am J Med Sci. 2012;4:416–20.

    Article  PubMed  Google Scholar 

  34. Oprea-Lager DE, Vincent AD, van Moorselaar RJ, Gerritsen WR, van den Eertwegh AJ, Eriksson J, et al. Dual-phase PET-CT to differentiate [18F]fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One. 2012;7:e48430.

    Article  PubMed  CAS  Google Scholar 

  35. Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol. 2011;59:51–60.

    Article  PubMed  Google Scholar 

  36. Souvatzoglou M, Krause BJ, Purschel A, Thamm R, Schuster T, Buck AK, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99:193–200.

    Article  PubMed  Google Scholar 

  37. Rybalov M, Breeuwsma AJ, Leliveld AM, Pruim J, Dierckx RA, de Jong IJ. Impact of total PSA, PSA doubling time and PSA velocity on detection rates of (11)C-choline positron emission tomography in recurrent prostate cancer. World J Urol. 2012;31:319–23.

    Article  PubMed  Google Scholar 

  38. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23.

    Article  PubMed  CAS  Google Scholar 

  39. Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, et al. Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37:301–9.

    Article  PubMed  Google Scholar 

  40. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400.

    Article  PubMed  Google Scholar 

  41. Detti B, Scoccianti S, Franceschini D, Cipressi S, Cassani S, Villari D, et al. Predictive factors of [18F]-choline PET/CT in 170 patients with increasing PSA after primary radical treatment. J Cancer Res Clin Oncol. 2013;139:521–8.

    Article  PubMed  CAS  Google Scholar 

  42. Passoni NM, Suardi N, Abdollah F, Picchio M, Giovacchini G, Messa C, et al. Utility of [11C]choline PET/CT in guiding lesion-targeted salvage therapies in patients with prostate cancer recurrence localized to a single lymph node at imaging: results from a pathologically validated series. Urol Oncol. 2013. doi:10.1016/j.urolonc.2013.03.006

  43. Souvatzoglou M, Eiber M, Martinez-Moeller A, Furst S, Holzapfel K, Maurer T, et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging. 2013;40 Suppl 1:79–88.

    Article  Google Scholar 

  44. Zhang H, Abiraj K, Thorek DL, Waser B, Smith-Jones PM, Honer M, et al. Evolution of bombesin conjugates for targeted PET imaging of tumors. PLoS One. 2012;7:e44046.

    Article  PubMed  CAS  Google Scholar 

  45. Nanni C, Schiavina R, Boschi S, Ambrosini V, Pettinato C, Brunocilla E, et al. Comparison of (18)F-FACBC and (11)C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging. 2013;40 Suppl 1:11–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Fundació Privada Cellex for financing the study and to the staff of the Nuclear Medicine Division of the University Hospital of Geneva for their technical assistance and commitment. We thank Dr. A. Poncet, Unit of Methodological Support, University Hospital of Geneva, for advice and suggestions on the statistical evaluation of our data.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Buchegger.

Additional information

Franz Buchegger and Valentina Garibotto contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchegger, F., Garibotto, V., Zilli, T. et al. First imaging results of an intraindividual comparison of 11C-acetate and 18F-fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy. Eur J Nucl Med Mol Imaging 41, 68–78 (2014). https://doi.org/10.1007/s00259-013-2540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2540-6

Keywords

Navigation