Skip to main content

Advertisement

Log in

Effect of antibiotics in the environment on microbial populations

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antibiotics act as an ecological factor in the environment that could potentially affect microbial communities. The effects include phylogenetic structure alteration, resistance expansion, and ecological function disturbance in the micro-ecosystem. Numerous studies have detected changes of microbial community structure upon addition of antibiotics in soil and water environment. However, the causal relationship between antibiotic input and resistance expansion is still under debate, with evidence either supporting or declining the contribution of antibiotics on alteration of antibiotic resistance. Effects of antibiotics on ecological functions have also been discovered, including nitrogen transformation, methanogenesis, and sulfate reduction. In the latter part, this review discusses in detail on factors that influence antibiotic effects on microbial communities in soil and aquatic environment, including concentration of antibiotics, exposure time, added substrates, as well as combined effects of multiple antibiotics. In all, recent research progress offer an outline of effects of antibiotics in the natural environment. However, questions raised in this review need further investigation in order to provide a comprehensive risk assessment on the consequence of anthropogenic antibiotic input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aksu Z, Tunc O (2005) Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem 40:831–847

    CAS  Google Scholar 

  • Alexy R, Kümpel T, Dörner M, Kümmerer K (2001) Effects of antibiotics against environmental bacteria studied with simple tests. In: 11th Annual Meeting of SETAC Europe, Madrid, Spain, May 6–11th, Proceedings

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161

    CAS  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Google Scholar 

  • Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    CAS  Google Scholar 

  • Basakcilardan-Kabakci S, Thompson A, Cartmell E, Le Corre K (2007) Adsorption and precipitation of tetracycline with struvite. Water Environ Res 79:2551–2556

    CAS  Google Scholar 

  • Beers MH (2006) The Merck manual of diagnosis and therapy, 18th edn. Merck & Co., Inc., Whitehouse Station

    Google Scholar 

  • Binh CTT, Heuer H, Gomes NCM, Kotzerke A, Fulle M, Wilke BM, Schloter M, Smalla K (2007) Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiol Ecol 62:290–302

    CAS  Google Scholar 

  • Binh CTT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    CAS  Google Scholar 

  • Biyela PT, Lin J, Bezuidenhout CC (2004) The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Sci Technol 50:45–50

    CAS  Google Scholar 

  • Bjorklund HV, Rabergh CMI, Bylund G (1991) Residues of oxolinic acid and oxytetracycline in fish and sediments from fish farms. Aquaculture 97:85–96

    CAS  Google Scholar 

  • Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8:1003–1034

    Google Scholar 

  • Boivin MEY, Breure AM, Posthuma L, Rutgers M (2002) Determination of field effects of contaminants—significance of pollution-induced community tolerance. Hum Ecol Risk Assess 8:1035–1055

    Google Scholar 

  • Brandt KK, Sjoholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43:2963–2968

    CAS  Google Scholar 

  • Carman RJ, Simon MA, Fernandez H, Miller MA, Bartholomew MJ (2004) Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats. Regul Toxicol Pharmacol 40:319–326

    CAS  Google Scholar 

  • Čermák L, Kopecký J, Novotná J, Omelka M, Parkhomenko N, Plháčková K, Ságová-Marečková M (2008) Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Appl Soil Ecol 40:348–358

    Google Scholar 

  • Chait R, Craney A, Kishony R (2007) Antibiotic interactions that select against resistance. Nature 446:668–671

    CAS  Google Scholar 

  • Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25:2208–2215

    CAS  Google Scholar 

  • Christian T, Schneider RJ, Farber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44

    CAS  Google Scholar 

  • Colinas C, Ingham E, Molina R (1994) Population responses of target and nontarget forest soil organisms to selected biocides. Soil Biol Biochem 26:41–47

    CAS  Google Scholar 

  • Córdova-Kreylos AL, Scow KM (2007) Effects of ciprofloxacin on salt marsh sediment microbial communities. ISME J 1:585–595

    Google Scholar 

  • Cromwell GL (2002) Why and how antibiotics are used in swine production. Anim Biotechnol 13:7–27

    Google Scholar 

  • Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103

    CAS  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453

    CAS  Google Scholar 

  • de Oliveira RGB, Wolters AC, Vanelsas JD (1995) Effects of antibiotics in soil on the population-dynamics of transposon TN5 carrying Pseudomonas fluorescens. Plant Soil 175:323–333

    Google Scholar 

  • Demoling LA, Bååth E (2008) No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environ Sci Technol 42:6917–6921

    Google Scholar 

  • Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840–848

    CAS  Google Scholar 

  • Dutta NK, Mazumdar K, Park JH (2009) In vitro synergistic effect of gentamicin with the anti-inflammatory agent diclofenac against Listeria monocytogenes. Lett Appl Microbiol 48:783–785

    CAS  Google Scholar 

  • El-Mahmood AM, Doughari JH (2008) Phytochemical screening and antibacterial evaluation of the leaf and root extracts of Cassia alata Linn. Afr J Pharm Pharacol 2:124–129

    Google Scholar 

  • Esiobu N, Armenta L, Ike J (2002) Antibiotic resistance in soil and water environments. Int J Environ Health Res 12:133–144

    Google Scholar 

  • Fan CA, Lee PK, Ng WJ, Alvarez-Cohen L, Brodie EL, Andersen GL, He J (2009) Influence of trace erythromycin and erythromycin-H2O on carbon and nutrients removal and on resistance selection in sequencing batch reactors (SBRs). Appl Microbiol Biotechnol 85:185–195

    CAS  Google Scholar 

  • Fedler C, Day D (1985) Anaerobic digestion of swine manure containing an antibiotic inhibitor. In: Agricultural waste utilization and management. Proceedings of the Fifth International Symposium on Agricultural Wastes, Chicago, Illinois, USA. 16–17 December 1985, pp 523–530

  • Figueroa RA, Leonard A, Mackay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    CAS  Google Scholar 

  • Fountoulakis MS, Drillia P, Stamatelatou K, Lyberatos G (2004) Toxic effect of pharmaceuticals on methanogenesis. Water Sci Technol 50:335–340

    CAS  Google Scholar 

  • Fountoulakis MS, Stamatelatou K, Lyberatos G (2008) The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresource Technol 99:7083–7090

    CAS  Google Scholar 

  • Ganiere JP, Denuault L (2009) Synergistic interactions between cefalexin and kanamycin in Mueller–Hinton broth medium and in milk. J Appl Microbiol 107:117–125

    CAS  Google Scholar 

  • Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203

    CAS  Google Scholar 

  • Gomez J, Mendez R, Lema JM (1996) The effect of antibiotics on nitrification processes—batch assays. Appl Biochem Biotechnol 57–8:869–876

    Google Scholar 

  • Gu C, Karthikeyan KG (2005) Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ Sci Technol 39:9166–9173

    CAS  Google Scholar 

  • Gu C, Karthikeyan KG (2008) Sorption of the antibiotic tetracycline to humic-mineral complexes. J Environ Qual 37:704–711

    CAS  Google Scholar 

  • Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460

    Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Lützhøft HCH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–394

    Google Scholar 

  • Hames A, Perry JD, Gould FK (2009) In vitro effect of metronidazole and vancomycin in combination on Clostridium difficile. J Antimicrob Chemother 63:1076–1076

    CAS  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    CAS  Google Scholar 

  • Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid, and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microbiol 38:1307–1312

    CAS  Google Scholar 

  • Herron PR, Toth IK, Heilig GHJ, Akkermans ADL, Karagouni A, Wellington EMH (1998) Selective effect of antibiotics on survival and gene transfer of streptomycetes in soil. Soil Biol Biochem 30:673–677

    CAS  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    CAS  Google Scholar 

  • Heuer H, Focks A, Lamshöft M, Smalla K, Matthies M, Spiteller M (2008) Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol Biochem 40:1892–1900

    CAS  Google Scholar 

  • Heuer H, Kopmann C, Binh CTT, Top EM, Smalla K (2009) Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G plus C content. Environ Microbiol 11:937–949

    CAS  Google Scholar 

  • Hu DF, Coats JR (2009) Laboratory evaluation of mobility and sorption for the veterinary antibiotic, tylosin, in agricultural soils. J Environ Monit 11:1634–1638

    CAS  Google Scholar 

  • Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: function, diversity, resistance. J Soils Sediments 4:11–16

    CAS  Google Scholar 

  • Jeyachandran R, Mahesh A, Cindrella L, Sudhakar S, Pazhanichamy K (2009) Antibacterial activity of plumbagin and root extracts of Plumbago zeylanica L. Acta Biol Cracov Ser Bot 51:17–22

    Google Scholar 

  • Kahn CM, Line S (eds) (2005) Merck veterinary manual, 9th edn. Merck & Co., Inc., Whitehouse Station

    Google Scholar 

  • Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discovery 4:71–U10

    CAS  Google Scholar 

  • Klaver AL, Matthews RA (1994) Effects of oxytetracycline on nitrification in a model aquatic system. Aquaculture 123:237–247

    CAS  Google Scholar 

  • Knapp CW, Engemann CA, Hanson ML, Keen PL, Hall KJ, Graham DW (2008) Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ Sci Technol 42:5348–5353

    CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322

    CAS  Google Scholar 

  • Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere 45:957–969

    Google Scholar 

  • Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320

    Google Scholar 

  • Kümmerer K (2009a) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Google Scholar 

  • Kümmerer K (2009b) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75:435–441

    Google Scholar 

  • Längin A, Alexy R, König A, Kümmerer K (2009) Deactivation and transformation products in biodegradability testing of beta-lactams amoxicillin and piperacillin. Chemosphere 75:347–354

    Google Scholar 

  • Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    CAS  Google Scholar 

  • Lin Q, Brookes PC (1999) Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils. Soil Biol Biochem 31:1999–2014

    CAS  Google Scholar 

  • Little AEF, Robinson CJ, Peterson SB, Raffa KE, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401

    CAS  Google Scholar 

  • Liu H, Zhang GP, Liu CQ, Li L, Xiang M (2009) The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. J Environ Monit 11:1199–1205

    CAS  Google Scholar 

  • Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58:1160–1167

    Google Scholar 

  • Macri A, Stazi AV, Didelupis GD (1988) Acute toxicity of furazolidone on Artemia salina, Daphnia magna, and Culex pipiens molestus larvae. Ecotoxicol Environ Safety 16:90–94

    CAS  Google Scholar 

  • Malik A, Celik EK, Bohn C, Bockelmann U, Knobel K, Grohmann E (2008) Detection of conjugative plasmids and antibiotic resistance genes in anthropogenic soils from Germany and India. FEMS Microbiol Lett 279:207–216

    CAS  Google Scholar 

  • Moenne-Loccoz Y, Tichy HV, O'Donnell A, Simon R, O'Gara F (2001) Impact of 2, 4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings. Appl Environ Microbiol 67:3418–3425

    CAS  Google Scholar 

  • Mohamed MAN, Ranjard L, Catroux C, Catroux G, Hartmann A (2005) Effect of natamycin on the enumeration, genetic structure and composition of bacterial community isolated from soils and soybean rhizosphere. J Microbiol Methods 60:31–40

    CAS  Google Scholar 

  • Müller AK, Westergaard K, Christensen S, Sørensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Google Scholar 

  • Murray BE (1997) Antibiotic resistance. Adv Intern Med 42:339–367

    CAS  Google Scholar 

  • Naslund J, Hedman JE, Agestrand C (2008) Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat Toxicol 90:223–227

    Google Scholar 

  • Ogita A, Fujita K, Tanaka T (2009) Salinomycin and citric acid in combination demonstrate bactericidal activity against Gram-negative bacteria. Ann Microbiol 59:611–614

    CAS  Google Scholar 

  • Patterson AJ, Colangeli R, Spigaglia P, Scott KP (2007) Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. Environ Microbiol 9:703–715

    CAS  Google Scholar 

  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. Bioscience 39:230–237

    Google Scholar 

  • Pietschmann S, Hoffmann K, Voget M, Pison U (2009) Synergistic effects of miconazole and polymyxin B on microbial pathogens. Vet Res Commun 33:489–505

    Google Scholar 

  • Polyanskaya LM, Golovchenko AV, Zvyagintsev DG (1995) Microbial biomass pool of the soils. Dokl Akad Nauk 344:846–848

    CAS  Google Scholar 

  • Puglisi S, Speciale A, Acquaviva R, Ferlito G, Ragusa S, De Pasquale R, Iauk L (2009) Antibacterial activity of Helleborus bocconei Ten. subsp siculus root extracts. J Ethnopharmacol 125:175–177

    CAS  Google Scholar 

  • Rossman A (2009) The impact of invasive fungi on agricultural ecosystems in the United States. Biol Invasions 11:97–107

    Google Scholar 

  • Rysz M, Alvarez PJJ (2004) Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Res 38:3705–3712

    CAS  Google Scholar 

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    CAS  Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892

    CAS  Google Scholar 

  • Schnabel EL, Jones AL (1999) Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 65:4898–4907

    CAS  Google Scholar 

  • Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335

    CAS  Google Scholar 

  • Sengeløv G, Agerso Y, Halling-Sørensen B, Baloda SB, Andersen JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    Google Scholar 

  • Skinner M, Taylor RB, Kanfer I (1993) The pH-stability and acid degradation of the macrolide antibiotic, josamycin. Eur J Pharm Sci 1:61–72

    Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–1514

    Google Scholar 

  • Sukul P, Spiteller M (2006) Sulfonamides in the environment as veterinary drugs. In: Reviews of Environmental Contamination and Toxicology, 187:67–101

  • Tabak M, Scher K, Chikindas ML, Yaron S (2009) The synergistic activity of triclosan and ciprofloxacin on biofilms of Salmonella typhimurium. FEMS Microbiol Lett 301:69–76

    CAS  Google Scholar 

  • Tang CM, Huang QX, Yu YY, Peng XZ (2009) Multiresidue determination of sulfonamides, macrolides, trimethprim, and chloramphenicol in sewage sludge and sediment using ultrasonic extraction coupled with solid phase extraction and liquid chromatography-tandem mass spectrometry. Chin J Anal Chem 37:1119–1124

    CAS  Google Scholar 

  • Tappe WG, Zarfl C, Kummer S, Burauel P, Vereecken H, Groeneweg J (2008) Growth-inhibitory effects of sulfonamides at different pH: dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays. Chemosphere 72:836–843

    CAS  Google Scholar 

  • Tendencia EA, de la Pena LD (2001) Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 195:193–204

    CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167

    CAS  Google Scholar 

  • Thiele-Bruhn S (2005) Microbial inhibition by pharmaceutical antibiotics in different soils—dose-response relations determined with the iron(III) reduction test. Environ Toxicol Chem 24:869–876

    CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    CAS  Google Scholar 

  • Tomlinso TG, Boon AG, Trotman CNA (1966) Inhibition of nitrification in activated sludge process of sewage disposal. J Appl Bacteriol 29:266–291

    Google Scholar 

  • Tuckfield RC, McArthur JV (2008) Spatial analysis of antibiotic resistance along metal contaminated streams. Microb Ecol 55:595–607

    CAS  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63:370–380

    Google Scholar 

  • Wang CP, Ding YJ, Teppen BJ, Boyd SA, Song CY, Li H (2009) Role of interlayer hydration in lincomycin sorption by smectite clays. Environ Sci Technol 43:6171–6176

    CAS  Google Scholar 

  • Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407:2711–2723

    CAS  Google Scholar 

  • Westergaard K, Müller AK, Christensen S, Bloem J, Sørensen SJ (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem 33:2061–2071

    CAS  Google Scholar 

  • Worthington PA (1988) Antibiotics with antifungal and antibacterial activity against plant-diseases. Nat Prod Rep 5:47–66

    CAS  Google Scholar 

  • Yang SW, Carlson K (2003) Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res 37:4645–4656

    CAS  Google Scholar 

  • Yang QX, Zhang J, Zhu KF, Zhang H (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci (China) 21:954–959

    CAS  Google Scholar 

  • Yap IKS, Li JV, Saric J, Martin FP, Davies H, Wang YL, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E (2008) Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7:3718–3728

    CAS  Google Scholar 

  • Yeh P, Tschumi AI, Kishony R (2006) Functional classification of drugs by properties of their pairwise interactions. Nat Genet 38:489–494

    CAS  Google Scholar 

  • Zhang XX, Zhang T, Fang H (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414

    CAS  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, C., He, J. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87, 925–941 (2010). https://doi.org/10.1007/s00253-010-2649-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2649-5

Keywords

Navigation