Skip to main content

Advertisement

Log in

The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

This article has been updated

Abstract

The list of alleles in the HLA-DRB, HLA-DQA, and HLA-DQB gene loci has grown enormously since the last listing in this journal 8 years ago. Crystal structure determination of several human and mouse HLA class II alleles, representative of two gene loci in each species, enables a direct comparison of ortholog and paralog loci. A new numbering system is suggested, extending earlier suggestions by [Fremont et al. in Immunity 8:305–317, (1998)], which will bring in line all the structural features of various gene loci, regardless of animal species. This system allows for structural equivalence of residues from different gene loci. The listing also highlights all amino acid residues participating in the various functions of these molecules, from antigenic peptide binding to homodimer formation, CD4 binding, membrane anchoring, and cytoplasmic signal transduction, indicative of the variety of functions of these molecules. It is remarkable that despite the enormous number of unique alleles listed thus far (DQA = 22, DQB = 54, DRA = 2, and DRB = 409), there is invariance at many specific positions in man, but slightly less so in mouse or rat, despite their much lower number of alleles at each gene locus in the latter two species. Certain key polymorphisms (from substitutions to an eight-residue insertion in the cytoplasmic tail of certain DQB alleles) that have thus far gone unnoticed are highly suggestive of differences or diversities in function and thus call for further investigation into the properties of these specific alleles. This listing is amenable to supplementation by future additions of new alleles and the highlighting of new functions to be discovered, providing thus a unifying platform of reference in all animal species for the MHC class II allelic counterparts, aiding research in the field and furthering our understanding of the functions of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 20 April 2022

    The Supplementary materials are now available online.

Abbreviations

APC:

antigen presenting cell

CDR:

complementarity-determining region

p:

pocket

TCR:

T-cell receptor

References

  • Andersen LC, Beaty JS, Nettles JW, Seyfried CE, Nepom GT, Nepom BS (1991) Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. J Exp Med 215:181–192

    Article  Google Scholar 

  • André P, Cambier JC, Wade TK, Raetz T, Wade WF (1994) Distinct structural compartmentalization of the signal transducing functions of major histocompatibility complex class II (Ia) molecules. J Exp Med 179:763–768

    Article  PubMed  Google Scholar 

  • Ashman JB, Miller J (1999) A role for the transmembrane domain in the trimerization of the MHC class II-associated invariant chain. J Immunol 163:2704–2712

    CAS  PubMed  Google Scholar 

  • Beaty JS, Sukkiennicki T, Nepom GT (1999) Allelic variation in transcription modulates MHC class II expression and function. Microbes Infect 1:919–927

    Article  CAS  PubMed  Google Scholar 

  • Benkovic AJ, Garcia KC (2003) Not just any T cell receptor will do. Immunity 18:7–11

    Article  Google Scholar 

  • Bhandoola A, Tai X, Eckhaus M, Auchincloss H, Mason K, Rubin S, Carbone FM, Grossman Z, Rosenberg A, Singer A (2002) Peripheral expression of self MHC-II influences the reactivity and self-tolerance of mature CD4+ T cells: evidence from a lymphopenic T cell model. Immunity 17:425–436

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC (1988) A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 332:845–850

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Cammarota G, Scheirle A, Tacaks B et al (1992) Identification of a CD4 binding site on the β2 domain of HLA-DR molecules. Nature 356:799–801

    Article  CAS  PubMed  Google Scholar 

  • Cariolou MA, Manoli P, Christophorou M, Bashiardes E, Karagrigoriou A, Budowle B (1998) Greek Cypriot allele and genotype frequencies for amplitype PM-DQA1 and D1S80 loci. J Forensic Sci 43:661–664

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Xie J, Li N, Zhou Y, Xin L, Chou KY (2005) Novel SLA-DQ alleles and their recombinant molecules in xenogeneic stimulation of human T cells. Transpl Immunol 14:83–89

    Article  CAS  PubMed  Google Scholar 

  • Chia CP, Khrebtukova I, McCluskey J, Wade WF (1994) MHC class II molecules that lack cytoplasmic domains are associated with the cytoskeleton. J Immunol 153:3398–3407

    CAS  PubMed  Google Scholar 

  • Cochran JR, Cameron TO, Stern LJ (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–250

    Article  CAS  PubMed  Google Scholar 

  • Corper AL, Stratmann T, Apostolopoulos V, Scott CA, Garcia KC, Kang AS, Wilson IA, Teyton L (2000) A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 288:505–511

    Article  CAS  PubMed  Google Scholar 

  • Depoil D et al. (2005) Immunological synapses are versatile structures enabling selective T cell polarization. Immunity 22:185–194

    Article  CAS  PubMed  Google Scholar 

  • Dessen A, Lawrence CM, Cupo S, Zaller DM, Wiley DC (1997) X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 7:473–481

    Article  CAS  PubMed  Google Scholar 

  • Engering A, Pieters J (2001) Association of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells. Intl Immunol 13:127–134

    Article  CAS  Google Scholar 

  • Ettinger RA, Moustakas AK, Lobaton SD (2004) Open reading frame sequencing and structure-based alignment of polypeptides encoded by RT1-Bb, RT1-Ba, RT1-Db, and RT1-Da alleles. Immunogenetics 56:585–596

    Article  CAS  PubMed  Google Scholar 

  • Fremont DH, Hendrickson WA, Marrack P, Kappler J (1996) Structures of an MHC class II molecule with covalently bound single peptides. Science 272:1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Fremont DH, Monnaie D, Nelson CA, Hendrickson WA, Unanue ER (1998) Crystal structure of I-Ak in complex with a dominant epitope of lysozyme. Immunity 8:305–317

    Article  CAS  PubMed  Google Scholar 

  • Gaur LK, Nepom GT (1996) Ancestral major histocompatibility complex genes beget conserved patterns of localized polymorphisms. Proc Natl Acad Sci USA 93:5380–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain RM (2001) The T-cell receptor for antigen: signaling and ligand discrimination. J Biol Chem 276:35223–35226

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Amaya M, Mellins E, Wiley DC (1995) The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378:457–462

    Article  CAS  PubMed  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  • Gregers TF, Norden TW, Birkeland HC, Sandlie I, Bakke O (2003) The cytoplasmic tail of invariant chain modulates processing and presentation. Eur J Immunol 33:277–286

    Article  CAS  PubMed  Google Scholar 

  • Hamad AR, O’Herrin SM, Lebowitz MS, Srikrishnan A, Bieler J, Schneck J, Pardoll D (1998) Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 co-receptor. J Exp Med 188:1633–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond C, Denzin LK, Pan M, Griffith JM, Geuze HJ, Cresswell P (1998) The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. J Immunol 161:3282–3291

    CAS  PubMed  Google Scholar 

  • Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW (2005) Unconventional topology of self-peptide-major histocompatibility complex binding of a human autoimmune T cell receptor. Nat Immunol 6:490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayball JD, Lake RA (2005) The immune function of MHC class II molecules mutated in the putative superdimer interface. Mol Cell Biochem 273:1–9

    Article  CAS  PubMed  Google Scholar 

  • He XL, Radu,C, Sidney J, Sette A, Ward ES, Garcia KC (2002) Structural snapshot of aberrant antigen presentation linked to autoimmunity: the immunodominant epitope of MBP complexed with I-Au. Immunity 17:83–94

    Article  CAS  PubMed  Google Scholar 

  • Hennecke J, Wiley DC (2002) Structure of a complex of the human α/β T cell receptor (TCR) HA1.7 influenza hemagglutinin peptide and major histocompatibility complex II molecule, HLA-DR4 (DRA1*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J Exp Med 195:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennecke J, Carfi A, Wiley DC (2000) Structure of a covalently-stabilised complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J 19:5611–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama K, Matsushita S, Kikuchi I, Iuchi M, Ohta N, Sasazuki T (1987) HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature 327:426–430

    Article  CAS  PubMed  Google Scholar 

  • Hitbold EM, Roche PA (2002) Trafficking of MHC class II molecules in the late secretory pathway. Curr Opin Immunol 14:30–35

    Article  Google Scholar 

  • Hong SC, Sant’Angelo DB, Dittel BN, Medzhitov R, Yoon ST, Waterbury PG, Janeway CA Jr (1997) The orientation of a T cell receptor to its MHC class II: peptide ligands. J Immunol 159:4395–4402

    CAS  PubMed  Google Scholar 

  • Horton R, Niblett D, Milne S, Palmer S, Tubby B, Trowsdale J, Beck S (1998) Large-scale sequence comparisons reveal unusually high levels of variation in the HLA-DQB1 locus in the class II region of the human MHC. J Mol Biol 282:71–97

    Article  CAS  PubMed  Google Scholar 

  • Hsing LC, Rudensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen processing. Immunol Rev 207:229–241

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2005) Immunobiology, 6th edn. Garland Science, London, pp 183–201

    Google Scholar 

  • Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1996) Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci USA 93:734-738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasanoff A, Wagner G, Wiley DC (1998) Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. EMBO J 17:6812–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EY, Fugger L, Strominger JL, Siebold C (2006) MHC class II proteins and disease: a structural perspective. Nat Rev Immunol 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki E, Matsuura N, Eguchi K (2006) Type 1 diabetes in Japan. Diabetologia 49:828–836

    Article  CAS  PubMed  Google Scholar 

  • Khalil I, d’Auriol, L, Gobet M et al (1990) A combination of HLA-DQB Asp57-negative and HLA-DQα Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest 85:1315–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C-Y, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 101:4175–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koulova L, Clark EA, Shu G, Dupont B (1991) The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T lymphocytes. J Exp Med 173:759–762

    Article  CAS  PubMed  Google Scholar 

  • Krummel MF, Sjaastad MD, Wulfing C, Davis MM (2000) Differential clustering of CD4 and CD3 zeta during T cell recognition. Science 289:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Kumanovics A, Takada T, Lindahl KF (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629-657

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A (2006) Signaling in the immunological synpase: defining the optimal size. Immunity 25:11–13

    Article  CAS  PubMed  Google Scholar 

  • Kwok WW, Kovats S, Thurtle P, Nepom GT (1993) HLA-DQ allelic polymorphisms constrain patterns of class II heterodimer formation. J Immunol 150:2263–2272

    CAS  PubMed  Google Scholar 

  • König R (2002) Interactions between MHC molecules and co-receptors of the TCR. Curr Opin Immunol 14:75–83

    Article  PubMed  Google Scholar 

  • König R, Huang Y-L, Germain RN (1992) MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 356:796–798

    Article  PubMed  Google Scholar 

  • König R, Shen X, and Germain RN (1995) Involvement of both major histocompatibility complex class II alpha and beta chains indicates a role for ordered oligomerization in T cell activation. J Exp Med 182:779–789

    Article  PubMed  Google Scholar 

  • Lane PJL, McConnell FM, Schieven GL, Clark EA, Ledbetter JA (1990) The role of class II molecules in human B cell activation: association with phosphatidyl inositol turnover, protein tyrosine phosphorylation and proliferation. J Immunol 144:3684–3692

    CAS  PubMed  Google Scholar 

  • Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3:940–943

    Article  CAS  PubMed  Google Scholar 

  • Latek RR, Suri A, Petzold SJ, Nelson CA, Kanagawa O, Unanue ER, Fremont DH (2000) Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 12:699–710

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Wucherpfennig KW, Wiley DC (2001) Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2: 501–507

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li H, Martin R, Mariuzza RA (2000) Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. J Mol Biol 304:177–188

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang Y, Lue J, Quant JA, Martin R, Mariuzza RA (2005) Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J 24:2968–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstedt R, Monk N, Lombardi G, Lechler R (2001) Amino acid substitutions in the putative MHC class II dimer of dimers’ interface inhibit CD4+ T cell activation. J Immunol 166:800–808

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Dai S, Crawford F, Fruge R, Marrack P, Kappler J (2002) Alternate interactions define the binding of peptides to the MHC molecule I-Ab. Proc Natl Acad Sci USA 99:8820–8825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marotto R, Shen X, König R (1999) Requirement for efficient interactions between CD4 and MHC class II molecules for survival of resting CD4+ T lymphocytes in vivo and for activation-induced cell death. J Immunol 162:5973–5980

    Google Scholar 

  • Marsh SGE, Parham P, Barber LD (2000) The HLA FactsBook. Academic, London, pp 1–390

    Google Scholar 

  • Matsuoka T, Tabata H, Matsushita S (2001) Monocytes are differentially activated through HLA-DR, -DQ and -DP molecules via mitogen-activated protein kinases. J Immunol 166:2202–2208

    Article  CAS  PubMed  Google Scholar 

  • Maynard J, Peterson K, Wilson DH, Adams EJ, Blondelle SE, Boulanger MJ, Wilson DB, Garcia KC (2005) Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22:81–92

    CAS  PubMed  Google Scholar 

  • Metz, DP, Farber DL, König R, Bottomly K (1997) Regulation of memory CD4 T cell adhesion by CD4-MHC class II interaction. J Immunol 159:2567–2573

    CAS  PubMed  Google Scholar 

  • Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Constantine KL, Naemura J, Leytze G, Peach RJ, Lavoie TB, Mueller L, Linsley PS (1997) Solution structure of human CTLA4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4:527–531

    Article  CAS  PubMed  Google Scholar 

  • MHC-sequencing consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Nature 401:921–923

    Article  Google Scholar 

  • Mooney N, Grillot-Courvalin C, Hivroz C, Charron D (1989) A role for MHC class II antigens in B-cell activation. J Autoimmun 2(Suppl):215–223

    Article  PubMed  Google Scholar 

  • Morzycka-Wroblewska E, Harwood JI, Smith JR, Kagnoff MS (1993) Structure and evolution of the promoter regions of the DQA genes. Immunogenetics 37:364–372

    Article  CAS  PubMed  Google Scholar 

  • Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–1193

    Article  CAS  PubMed  Google Scholar 

  • Mosyak L, Zaller DM, Wiley DC (1998) The structure of HLA-DM, the peptide exchange catalyst that loads antigen onto class II MHC molecules during antigen presentation. Immunity 9:377–383

    Article  CAS  PubMed  Google Scholar 

  • Moustakas AK, Routsias J, Papadopoulos GK (2000a) Modelling of the MHC II allele I-Ag7 of NOD mouse: pH-dependent changes in specificity at pockets 9 and 6 explain several of the unique properties of this molecule. Diabetologia 43:609-624

    Article  CAS  PubMed  Google Scholar 

  • Moustakas AK, van de Wal Y, Routsias J, Kooy YMC, van Veelen P, Drijfhout JW, Koning F, Papadopoulos GK (2000b) Structure of celiac disease-associated HLA-DQ8 and non-associated HLA-DQ9 alleles in complex with two disease-specific epitopes. Intl Immunol 12:1157-1166

    Article  CAS  Google Scholar 

  • Moustakas AK, Papadopoulos GK (2002) Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from IDDM: keys to the fate of beta cells. Am J Medical Genetics 115:37-47

    Article  Google Scholar 

  • Murthy VL, Stern LJ (1997) The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Structure 5:1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Nepom GT, Kwok WW (1998) Molecular basis for HLA-DQ associations with IDDM. Diabetes 47:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Newell MK, Justement LB, Miles CR, Freed JH (1988) Biochemical characterization of proteins that co-purify with class II antigens of the murine MHC. J Immunol 140:1930–1938

    CAS  PubMed  Google Scholar 

  • Ohmura-Oshimo M, Matsuki Y, Aoki M, Goto E, Mito M, Uematsu M, Kakiuchi T, Hotta H, Ishido S (2006) Inhibition of MHC II expression and immune responses by c-MIR. J Immunol 177:341–354

    Article  Google Scholar 

  • Oksenberg JR, Seboun E, Hauser SL (1996) Genetics of demyelinating diseases. Brain Pathol 6:289–302

    Article  CAS  PubMed  Google Scholar 

  • Paliakasis K, Routsias J, Petratos K, Ouzounis C, Kokkinidis M, Papadopoulos GK (1996) Novel structural features of the human histocompatibility molecules HLA-DQ as revealed by modelling based on the published structure of the related molecule HLA-DR1. J Struct Biol 117:145–163

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos GK, Ouzounis C, Eliopoulos E (1998) RGD sequences in several receptor proteins: novel cell adhesion function for receptors? Int J Biol Macromol 22:51–57

    Article  CAS  PubMed  Google Scholar 

  • Platz P, Jakobsen BK, Morling N, Ryder LP, Svejgaard A, Thomsen M, Christy M, Kromann H, Benn J, Nerup J, Green A, Hauge M (1981) HLA-D and -DR antigens in genetic analysis of insulin dependent diabetes mellitus. Diabetologia 21:108–115

    Article  CAS  PubMed  Google Scholar 

  • Rammensee H-G, Friede T, Stevanoviç S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228 (see also the updated listing on the web: http://www.syfpeithi.de)

    Article  CAS  PubMed  Google Scholar 

  • Reich Z, Boniface JJ, Lyons DS, Borochov N, Wachtel EJ, Davis MM (1997) Ligand-specific oligomerisation of T cell receptor molecules. Nature 387:617–620

    Article  CAS  PubMed  Google Scholar 

  • Reichstetter S, Papadopoulos GK, Moustakas AK, Swanson E, Liu AW, Beheray S, Ettinger RA, Nepom GT, Kwok WW (2002) Mutational analysis of critical residues determining antigen presentation and activation of HLA-DQ0602 restricted T cell clones. Hum Immunol 63:185–193

    Article  CAS  PubMed  Google Scholar 

  • Reinherz EL, Tan K, Tang L, Kern P, Liu J, Xiong Y, Husset RE, Smalyar AS, Hare B, Zhang R, Joachimiak A, Chang HC, Wagner G, Wang J (1999) The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286:1913–1921

    Article  CAS  PubMed  Google Scholar 

  • Riberdy JM, Mostaghel E, Doyle C (1998) Disruption of the CD4-major histocompatibility complex class II interaction blocks the development of CD4+ T cells in vivo. Proc Natl Acad Sci USA 95:4493–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich T, Lawler SE, Lord JM, Blancheteaux VM, Charron DJ, Mooney NA (1997) HLA class II-induced translocation of PKCα and PKCβII isoforms is abrogated following truncation of DRβ cytoplasmic domains. J Immunol 159:3792–3798

    CAS  PubMed  Google Scholar 

  • Robinson J, Marsh SG (2003) HLA informatics. Accessing HLA sequences from sequence data bases. Methods Mol Biol 210:3–21

    CAS  PubMed  Google Scholar 

  • Rosloniec EF, Ivey RA III, Whittington KB, Kang KH, Park H-W (2006) Crystallographic structure of a rheumatoid arthritis MHC susceptibility allele, HLA-DR1 (DRB1*0101), complexed with the immunodominant determinant of human type II collagen. J Immunol 177:3884–3892

    Article  CAS  PubMed  Google Scholar 

  • Routsias J, Papadopoulos GK (1995) Polymorphic structural features of modelled HLA-DQ molecules segregate according to susceptibility or resistance to IDDM. Diabetologia 38:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein E, Le Naour F, Lagaudrière-Gesbert C, Billard M, Conjeaud H, Boucheid C (1996) CD9, CD63, CD81 and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665

    Article  CAS  PubMed  Google Scholar 

  • Rudolph MG, Wilson IA (2002) The specificity of TCR/pMHC interaction. Curr Opin Immunol 14:52–65

    Article  CAS  PubMed  Google Scholar 

  • Salgame P, Convit J, Bloom BR (1991) Immunological suppression of human CD8+ T cells is receptor dependent and HLA-DQ restricted. Proc Natl Acad Sci USA 88:2598–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schick MR, Levy S (1993) The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J Immunol 151:4090–4097

    CAS  PubMed  Google Scholar 

  • Scott PC, Gogolin-Ewens KJ, Adams TE, Brandon MR (1991) Nucleotide sequence, polymorphism, and evolution of ovine MHC class II DQA genes. Immunogenetics 34:69–79

    CAS  PubMed  Google Scholar 

  • Scott CA, Peterson PA, Teyton L, Wilson IA (1998) Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 8:319–329

    Article  CAS  PubMed  Google Scholar 

  • Siebold C, Hansen BE, Wyer JR, Harlos K, Esnouf RE, Svejgaard A, Bell JI, Strominger JL, Jones EY, Fugger L (2004) Crystal structure of HLA-DQ0602 that protects against Type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci USA 101:1999–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J-S, Ebersold M, Pyppaert M, Delamarre L, Hartley A, Mellman I (2006) surface expression of MHC class II in dendritic cells is controlled by ubiquination. Nature 444:115–118

    Article  CAS  PubMed  Google Scholar 

  • Smiley ST, Rudensky AY, Glimcher LH, Grusby MJ (1996) Truncation of the class II β-chain cytoplasmic domain influences the level of class II/invariant chain-derived peptide complexes. Proc Natl Acad Sci USA 93:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW (1998) Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188:1511–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollid LM, Marcussen G, Ek G et al (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ α/β heterodimer. J Exp Med 169:345–350

    Article  CAS  PubMed  Google Scholar 

  • Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quilliam LA, Kay BM (1996) Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCγ, and Grb2. Proc Natl Acad Sci (USA) 93:1540–1544

    Article  CAS  Google Scholar 

  • Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune response. Nature 410:608–611

    Article  CAS  PubMed  Google Scholar 

  • Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221

    Article  CAS  PubMed  Google Scholar 

  • Stratikos E, Mosyak L, Zaller DM, Wiley DC (2002) Identification of the lateral interaction surfaces of human histocompatibility leukocyte antigen (HLA)-DM with DR1 by formation of tethered complexes that present enhanced HLA-DM catalysis. J Exp Med 196:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri A, Lovitch SB, Unanue ER (2005a) The wide diversity and complexity of peptides bound to class II MHC molecules. Curr Opin Immunol 17:1–8

    Article  CAS  Google Scholar 

  • Suri A, Walters JJ, Gross ML, Unanue ER (2005b) Natural peptides selected by diabetogenic DQ8 and murine I-Ag7 molecules show common sequence specificity. J Clin Invest 115:2268–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szewczuk Z, Siemion IZ, Wieczorek Z (1996) Immunological properties of the thymopentin-like fragments of HLA-DQ. Mol Immunol 33:903–908

    Article  CAS  PubMed  Google Scholar 

  • Szewczuk Z, Wilczynski A, Stefanovwicz P, Fedorowicz W, Siemion IZ, Wieczorek Z (1999) Immunosuppressory mini-regions of HLA-DP and HLA-DR. Mol Immunol 36:525–533

    Article  CAS  PubMed  Google Scholar 

  • Thorsby E, Rønningen KS (1993) Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus. Diabetologia 36:371–377

    Article  CAS  PubMed  Google Scholar 

  • Todd JA, Acha-Orbea H, Bell JI, Chao N, Fronek Z, Jacob CO, McDermott M, Sinha AA, Timmerman L, Steinman L, et al (1988) A molecular basis for MHC Class II-associated autoimmunity. Science 240:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • van de Wal Y, Kooy YM, Drijfhout JW, Amons R, Papadopoulos GK, Koning F (1997) Unique peptide binding characteristics of the disease-associated DQ(alpha 1*0501, beta 1*0201) vs the non-disease-associated DQ(alpha 1*0201, beta 1*0202) molecule. Immunogenetics 46:484-492

    Article  CAS  PubMed  Google Scholar 

  • Vartdal F, Johansen BH, Friede T, Thorpe CJ, Stevanovic S, Eriksen JE, Sletten K, Thorsby E, Rammensee HG, Sollid LM (1996) The peptide binding motif of the disease associated HLA-DQ (alpha 1* 0501, beta 1* 0201) molecule. Eur J Immunol 26:2764-2772

    Article  CAS  PubMed  Google Scholar 

  • Vogt A, Spindeldrecher S, Kropshofer H (2002) Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains. Immunol Rev 189:136–151

    Article  CAS  PubMed  Google Scholar 

  • Wang J-h, Meijers R, Xiong Y, Liu J-h, Sakihama T, Zhang R, Joachimiak A, Reinherz EL (2001) Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci USA 98:10799–10804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Kem P, Chiang HC, Reinherz EL (2001) T cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J Biol Chem 276:5659-5667

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Rudensky AY, Teyton AL, Wilson IA (2003) Crystal structure of MHC class II I-Ab in complex with a human CLIP peptide: Prediction of an I-Ab peptide-binding motif. J Mol Biol 326:1157–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant from the European Union’s 3rd Framework for Regional Development in Greece (EPEAEK II scheme, Program Archimedes) to GKP (75% EU funds, 25% Greek state funds). We thank Dr. Aikaterini Stavropoulos-Giokas for her help regarding nomenclature of HLA alleles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Papadopoulos.

Additional information

Note added in the revised version: While the manuscript was under revision, a second work appeared within the year of 2006, implicating the H2-Aβ225Lys in the process of ubiquitination of these molecules, hence intricately involved with their lifetime on the cell membrane (Ohmura-Oshimo et al. 2006; Shin et al. 2006). While the residue is conserved in HLA-DQ/DR, we do not wish to mark this property in the Supplementary Tables before confirmation in the human system. This nevertheless, further demonstrates the utility of the Supplementary Tables to all interested researchers, as the tables can be amended as new properties are firmly established.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondinas, G.P., Moustakas, A.K. & Papadopoulos, G.K. The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 59, 539–553 (2007). https://doi.org/10.1007/s00251-007-0224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0224-8

Keywords

Navigation