Skip to main content

Advertisement

Log in

Antimicrobial peptides with cell-penetrating peptide properties and vice versa

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson WF (1998) Human gene therapy. Nature 392(6679 Suppl):25–30

    PubMed  CAS  Google Scholar 

  • Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M (1992) Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA) Protein Struct Mol Enzymol 1121(1–2):130–136

    Article  CAS  Google Scholar 

  • Binder H, Lindblom G (2003) Charge-dependent translocation of the trojan peptide penetratin across lipid membranes. Biophys J 85(2):982–995

    Article  PubMed  CAS  Google Scholar 

  • Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30(19):4671–4678

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (2000) Innate immunity and the normal microflora. Immunol Rev 173:5–16

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  PubMed  CAS  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268(10):7044–7054

    PubMed  CAS  Google Scholar 

  • Chen C, Brock R, Luh F, Chou PJ, Larrick JW, Huang RF, Huang TH (1995) The solution structure of the active domain of cap18–a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 370(1–2):46–52

    Article  PubMed  CAS  Google Scholar 

  • Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K (2003) Antennapedia and hiv transactivator of transcription (tat) “Protein transduction domains” Promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278(37):35109–35114

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    PubMed  CAS  Google Scholar 

  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J Biol Chem 271(30):18188–18193

    Article  PubMed  CAS  Google Scholar 

  • Deshayes S, Heitz A, Morris MC, Charnet P, Divita G, Heitz F (2004) Insight into the mechanism of internalization of the cell-penetrating carrier peptide pep-1 through conformational analysis. Biochemistry 43(6):1449–1457

    Article  PubMed  CAS  Google Scholar 

  • Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci 105(34):12128–12133

    Article  PubMed  CAS  Google Scholar 

  • Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7):848–866

    Article  PubMed  CAS  Google Scholar 

  • Duchardt F, Ruttekolk IR, Verdurmen WPR, Lortat-Jacob H, Burck J, Hufnagel HR, Fischer R, van den Heuvel M, Lowik DWPM, Vuister GW, Ulrich A, de Waard M, Brock R (2009) A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem 284(52):36099–36108

    Article  PubMed  CAS  Google Scholar 

  • El-Andaloussi S, Holm T, Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11(28):3597–3611

    Article  PubMed  CAS  Google Scholar 

  • Elmquist A, Lindgren M, Bartfai T, Langel U (2001) Ve-cadherin-derived cell-penetrating peptide, pvec, with carrier functions. Exp Cell Res 269(2):237–244

    Article  PubMed  CAS  Google Scholar 

  • Fernandez DI, Gehman JD, Separovic F (2009) Membrane interactions of antimicrobial peptides from australian frogs. Biochimica et Biophysica Acta (BBA) Biomembr 1788(8):1630–1638

    Article  CAS  Google Scholar 

  • Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem 6(12):2126–2142

    Article  PubMed  CAS  Google Scholar 

  • Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D (1990) Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 265(31):18871–18874

    PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57(10):3142–3146

    PubMed  CAS  Google Scholar 

  • Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62(22):2588–2598

    Article  PubMed  CAS  Google Scholar 

  • González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(4):301.e301–301.e308

    Article  CAS  Google Scholar 

  • Hancock REW (1997) Peptide antibiotics. Lancet 349(9049):418–422

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1(3):156–164

    Article  PubMed  CAS  Google Scholar 

  • Henriques ST, Castanho MA (2004) Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Biochemistry 43(30):9716–9724

    Article  PubMed  CAS  Google Scholar 

  • Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human hela cells is driven by membrane electrostatic potential. Biochemistry 44(30):10189–10198

    Article  PubMed  CAS  Google Scholar 

  • Henriques ST, Melo MN, Castanho MA (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Henzler Wildman KA, Lee D-K, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, ll-37. Biochemistry 42(21):6545–6558

    Article  PubMed  CAS  Google Scholar 

  • Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80(2):801–811

    Article  PubMed  CAS  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352

    Article  PubMed  CAS  Google Scholar 

  • Järver P, Langel Ü (2006) Cell-penetrating peptides–a brief introduction. Biochimica et Biophysica Acta (BBA) Biomembr 175(3):260–263

    Article  CAS  Google Scholar 

  • Järver P, Mager I, Langel U (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci (in press)

  • Jelinek R, Kolusheva S (2005) Membrane interactions of host-defense peptides studied in model systems. Curr Protein Pept Sci 6(1):103–114

    Article  PubMed  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    Article  PubMed  CAS  Google Scholar 

  • Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284(49):33957–33965

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Park Y, Hahm KS, Lee DG (2006) Biological activity of tat (47–58) peptide on human pathogenic fungi. Biochem Biophys Res Commun 345(1):222–228

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Jeong KS, Lee DG (2008) Effective antibacterial action of tat (47–58) by increased uptake into bacterial cells in the presence of trypsin. J Microbiol Biotechnol 18(5):990–996

    PubMed  CAS  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63(4):389–406

    Article  PubMed  CAS  Google Scholar 

  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327(2):231–236

    Article  PubMed  CAS  Google Scholar 

  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001a) The antibacterial peptide pyrrhocoricin inhibits the atpase actions of dnak and prevents chaperone-assisted protein folding. Biochemistry 40(10):3016–3026

    Article  PubMed  CAS  Google Scholar 

  • Kragol G, Otvos L Jr, Feng J, Gerhard W, Wade JD (2001b) Synthesis of a disulfide-linked octameric peptide construct carrying three different antigenic determinants. Bioorg Med Chem Lett 11(11):1417–1420

    Article  PubMed  CAS  Google Scholar 

  • Langer M, Kratz F, Rothen-Rutishauser B, Wunderli-Allenspach H, Beck-Sickinger AG (2001) Novel peptide conjugates for tumor-specific chemotherapy. J Med Chem 44(9):1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW, Hirata M, Shimomoura Y, Yoshida M, Zheng H, Zhong J, Wright SC (1993) Antimicrobial activity of rabbit cap18-derived peptides. Antimicrob Agents Chemother 37(12):2534–2539

    PubMed  CAS  Google Scholar 

  • Lau YE, Rozek A, Scott MG, Goosney DL, Davidson DJ, Hancock RE (2005) Interaction and cellular localization of the human host defense peptide ll-37 with lung epithelial cells. Infect Immun 73(1):583–591

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2(9):727–738

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11(1):23–27

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9(1):18–22

    Article  PubMed  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414

    Article  PubMed  CAS  Google Scholar 

  • Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103

    Article  PubMed  CAS  Google Scholar 

  • Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Östlund P, Hällbrink M, Langel Ü (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416–425

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383(1–2):93–98

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1–2):1–10

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34(19):6521–6526

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730–2736

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19(12):1173–1176

    Article  PubMed  CAS  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10(6):1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Nekhotiaeva N, Elmquist A, Rajarao GK, Hallbrink M, Langel U, Good L (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18(2):394–396

    PubMed  CAS  Google Scholar 

  • Neundorf I, Hoyer J, Splith K, Rennert R, Peindy N’dongo H W, Schatzschneider U (2008) Cymantrene conjugation modulates the intracellular distribution and induces high cytotoxicity of a cell-penetrating peptide. Chem Commun (Camb) (43):5604–5606

  • Neundorf I, Rennert R, Hoyer J, Schramm F, Löbner K, Kitanovic I, Wölfl S (2009) Fusion of a short ha2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2(2):49–65

    Article  CAS  Google Scholar 

  • Nori A, Jensen KD, Tijerina M, Kopeckova P, Kopecek J (2003) Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem 14(1):44–50

    Article  PubMed  CAS  Google Scholar 

  • Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414(1–2):127–139

    PubMed  CAS  Google Scholar 

  • Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide ll-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6(10):497–511

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr (2005) Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 11(11):697–706

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 9(4):742–749

    Article  PubMed  CAS  Google Scholar 

  • Otvos L, Cudic M, Chua BY, Deliyannis G, Jackson DC (2004) An insect antibacterial peptide-based drug delivery system. Mol Pharm 1(3):220–232

    Article  PubMed  CAS  Google Scholar 

  • Palm C, Netzereab S, Hallbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27(7):1710–1716

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin ii: buforin ii kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257

    Article  PubMed  CAS  Google Scholar 

  • Pokorny A, Birkbeck TH, Almeida PF (2002) Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles. Biochemistry 41(36):11044–11056

    Article  PubMed  CAS  Google Scholar 

  • Pooga M, Hallbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12(1):67–77

    PubMed  CAS  Google Scholar 

  • Pooga M, Kut C, Kihlmark M, Hallbrink M, Fernaeus S, Raid R, Land T, Hallberg E, Bartfai T, Langel U (2001) Cellular translocation of proteins by transportan. FASEB J 15(8):1451–1453

    PubMed  CAS  Google Scholar 

  • Powers J-PS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691

    Article  PubMed  CAS  Google Scholar 

  • Powers JP, Tan A, Ramamoorthy A, Hancock RE (2005) Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44(47):15504–15513

    Article  PubMed  CAS  Google Scholar 

  • Räägel H, Säälik P, Hansen M, Langel Ü, Pooga M (2009) Cpp-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release 139(2):108–117

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590

    Article  PubMed  CAS  Google Scholar 

  • Romeo D, Skerlavaj B, Bolognesi M, Gennaro R (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263(20):9573–9575

    PubMed  CAS  Google Scholar 

  • Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J (2000) New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57(4):679–686

    PubMed  CAS  Google Scholar 

  • Rousselle C, Smirnova M, Clair P, Lefauconnier JM, Chavanieu A, Calas B, Scherrmann JM, Temsamani J (2001) Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther 296(1):124–131

    PubMed  CAS  Google Scholar 

  • Sadler K, Eom KD, Yang JL, Dimitrova Y, Tam JP (2002) Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 41(48):14150–14157

    Article  PubMed  CAS  Google Scholar 

  • Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726

    Article  PubMed  CAS  Google Scholar 

  • Sandgren S, Wittrup A, Cheng F, Jonsson M, Eklund E, Busch S, Belting M (2004) The human antimicrobial peptide ll-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J Biol Chem 279(17):17951–17956

    Article  PubMed  CAS  Google Scholar 

  • Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M (1999) Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J Pept Sci 5(4):185–194

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66(4):236–248

    Article  PubMed  CAS  Google Scholar 

  • Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system mpg: Implications for delivery of sirna into mammalian cells. Nucleic Acids Res 31(11):2717–2724

    Article  PubMed  CAS  Google Scholar 

  • Skerlavaj B, Romeo D, Gennaro R (1990) Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58(11):3724–3730

    PubMed  CAS  Google Scholar 

  • Sokolov Y, Mirzabekov T, Martin DW, Lehrer RI, Kagan BL (1999) Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta 1420(1–2):23–29

    PubMed  CAS  Google Scholar 

  • Splith K, Hu W, Schatzschneider U, Gust R, Ott I, Onambele LA, Prokop A, Neundorf I (2010a) Protease-activatable organometal-peptide bioconjugates with enhanced cytotoxicity on cancer cells. Bioconjug Chem 21(7):1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Splith K, Neundorf I, Hu W, N’Dongo HWP, Vasylyeva V, Merz K, Schatzschneider U (2010b) Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive cpmn(co)3 peptide conjugates. Dalton Trans 39(10):2536–2545

    Article  PubMed  CAS  Google Scholar 

  • Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41(8):1738–1742

    PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246–248

    Article  PubMed  CAS  Google Scholar 

  • Steiner V, Schar M, Bornsen KO, Mutter M (1991) Retention behaviour of a template-assembled synthetic protein and its amphiphilic building blocks on reversed-phase columns. J Chromatogr 586(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Takeshima K, Chikushi A, Lee KK, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278(2):1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Tani A, Lee S, Oishi O, Aoyagi H, Ohno M (1995) Interaction of the fragments characteristic of bactenecin 7 with phospholipid bilayers and their antimicrobial activity. J Biochem 117(3):560–565

    PubMed  CAS  Google Scholar 

  • Tomasinsig L, Skerlavaj B, Papo N, Giabbai B, Shai Y, Zanetti M (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281(1):383–391

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98(15):8786–8791

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Scocchi M, Skerlavaj B, Gennaro R (1994) Identification and characterization of a primary antibacterial domain in cap18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 339(1–2):108–112

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55(1):4–30

    Article  PubMed  CAS  Google Scholar 

  • Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC (2006) Cargo-dependent mode of uptake and bioavailability of tat-containing proteins and peptides in living cells. FASEB J 20(11):1775–1784

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of ll-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9):2206–2214

    PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated hiv-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Richard JP, Rispal C, Lebleu B (2003) Tat peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4(2):125–132

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786(2):126–138

    PubMed  CAS  Google Scholar 

  • Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 19(12):2346–2356

    Article  PubMed  CAS  Google Scholar 

  • Walther C, Ott I, Gust R, Neundorf I (2009) Specific labeling with potent radiolabels alters the uptake of cell-penetrating peptides. Biopolymers 92(5):445–451

    Article  PubMed  CAS  Google Scholar 

  • Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107(2):584–587

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Rozek A, Hancock RE (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Oglecka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A (2010) Dual functions of the human antimicrobial peptide ll-37–target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta 1798(12):2201–2208

    Google Scholar 

  • Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13(4):840–844

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PK (2006) Interaction of the antimicrobial peptide pheromone plantaricin a with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758(9):1461–1474

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Shin SY (2009a) Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem Biol Drug Des 73(2):209–215

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Shin SY (2009b) Effects of dimerization of the cell-penetrating peptide tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 15(5):345–352

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Lan H, Park IS, Kim JI, Jin HZ, Hahm KS, Shin SY (2006) Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide pep-1. Biochem Biophys Res Commun 349(2):769–774

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the project FOR 630 “Biological function of organometallic compounds.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Neundorf.

Additional information

Membrane-active peptides: 455th WE-Heraeus-Seminar and AMP 2010 Workshop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Splith, K., Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40, 387–397 (2011). https://doi.org/10.1007/s00249-011-0682-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0682-7

Keywords

Navigation