Skip to main content

Advertisement

Log in

Molecular Mechanisms of Vitamin D Action

  • Original Paper
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP9k, and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK, Bartik L, Egan JB, Wu Y, Kubicek JL, Lowmiller CL, Moffet EW, Forster RE, Jurutka PW (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97

    Article  PubMed  CAS  Google Scholar 

  2. Brumbaugh PF, Hughes MR, Haussler MR (1975) Cytoplasmic and nuclear binding components for 1α,25-dihydroxyvitamin D3 in chick parathyroid glands. Proc Natl Acad Sci USA 72:4871–4875

    Article  PubMed  CAS  Google Scholar 

  3. DeMay MB, Kiernan MS, DeLuca HF, Kronenberg HM (1992) Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 89:8097–8101

    Article  PubMed  CAS  Google Scholar 

  4. Bergwitz C, Juppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104

    Article  PubMed  CAS  Google Scholar 

  5. Kolek OI, Hines ER, Jones MD, Lesueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1α25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042

    Article  PubMed  CAS  Google Scholar 

  6. Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H, Rohowsky-Kochan C, Ichiyama K, Yoshimura A, Steinman L, Christakos S, Youssef S (2011) 1,25-Dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol 31:3653–3669

    Article  PubMed  CAS  Google Scholar 

  7. Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8:685–698

    Article  PubMed  CAS  Google Scholar 

  8. Bikle D (2009) Extrarenal synthesis of 1,25-dihydroxyvitamin D and its health implications. Clin Rev Bone Miner Metab 7:114–125

    Article  CAS  Google Scholar 

  9. St-Arnaud R (2010) CYP24A1-deficient mice as a tool to uncover a biological activity for vitamin D metabolites hydroxylated at position 24. J Steroid Biochem Mol Biol 121:254–256

    Article  PubMed  CAS  Google Scholar 

  10. Ohyama Y, Ozono K, Uchida M, Shinki T, Kato S, Suda T, Yamamoto O, Noshiro M, Kato Y (1994) Identification of a vitamin D-responsive element in the 5’ flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 269:10545–10550

    PubMed  CAS  Google Scholar 

  11. Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, Kato S (1999) Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 140:2224–2231

    Article  PubMed  CAS  Google Scholar 

  12. Haussler MR, Norman AW (1969) Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci USA 62:155–162

    Article  PubMed  CAS  Google Scholar 

  13. Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Jurutka PW (2011) Nuclear vitamin D receptor: natural ligands, molecular structure–function, and transcriptional control of vital genes. In: Feldman D, Pike JW, Adams J (eds) vitamin D. Academic Press, San Diego, pp 137–170

    Chapter  Google Scholar 

  14. Jin CH, Kerner SA, Hong MH, Pike JW (1996) Transcriptional activation and dimerization functions in the human vitamin D receptor. Mol Endocrinol 10:945–957

    Article  PubMed  CAS  Google Scholar 

  15. Colnot S, Lambert M, Blin C, Thomasset M, Perret C (1995) Identification of DNA sequences that bind retinoid X receptor-1,25(OH)2D3-receptor heterodimers with high affinity. Mol Cell Endocrinol 113:89–98

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordonez RD, Bruning JB, Istrate MA, Kojetin DJ, Dodge JA, Burris TP, Griffin PR (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18:556–563

    Article  PubMed  CAS  Google Scholar 

  17. Meyer MB, Watanuki M, Kim S, Shevde NK, Pike JW (2006) The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol Endocrinol 20:1447–1461

    Article  PubMed  CAS  Google Scholar 

  18. Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW (2006) 1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 20:2215–2230

    Article  PubMed  CAS  Google Scholar 

  19. Kim S, Yamazaki M, Shevde NK, Pike JW (2007) Transcriptional control of receptor activator of nuclear factor-kappaB ligand by the protein kinase A activator forskolin and the transmembrane glycoprotein 130-activating cytokine, oncostatin M, is exerted through multiple distal enhancers. Mol Endocrinol 21:197–214

    Article  PubMed  CAS  Google Scholar 

  20. Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA, Hsieh JC, Slater SA, Hsieh G, Kaczmarska M, Jurutka PW, Kolek OI, Ghishan FK, Haussler MR (2007) 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103:381–388

    Article  PubMed  CAS  Google Scholar 

  21. Malloy PJ, Pike JW, Feldman D (1999) The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 20:156–188

    Article  PubMed  CAS  Google Scholar 

  22. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5:173–179

    Article  PubMed  CAS  Google Scholar 

  23. Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mely Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570

    Article  PubMed  CAS  Google Scholar 

  24. Jurutka PW, Hsieh J-C, Remus LS, Whitfield GK, Thompson PD, Haussler CA, Blanco JCG, Ozato K, Haussler MR (1997) Mutations in the 1,25-dihydroxyvitamin D3 receptor identifying C-terminal amino acids required for transcriptional activation that are functionally dissociated from hormone binding, heterodimeric DNA binding and interaction with basal transcription factor IIB, in vitro. J Biol Chem 272:14592–14599

    Article  PubMed  CAS  Google Scholar 

  25. Thompson PD, Remus LS, Hsieh J-C, Jurutka PW, Whitfield GK, Galligan MA, Encinas Dominguez C, Haussler CA, Haussler MR (2001) Distinct retinoid X receptor activation function-2 residues mediate transactivation in homodimeric and vitamin D receptor heterodimeric contexts. J Mol Endocrinol 27:211–227

    Article  PubMed  CAS  Google Scholar 

  26. Koszewski NJ, Ashok S, Russell J (1999) Turning a negative into a positive: vitamin D receptor interactions with the avian parathyroid hormone response element. Mol Endocrinol 13:455–465

    Article  PubMed  CAS  Google Scholar 

  27. Kim MS, Kondo T, Takada I, Youn MY, Yamamoto Y, Takahashi S, Matsumoto T, Fujiyama S, Shirode Y, Yamaoka I, Kitagawa H, Takeyama K, Shibuya H, Ohtake F, Kato S (2009) DNA demethylation in hormone-induced transcriptional derepression. Nature 461:1007–1012

    Article  PubMed  CAS  Google Scholar 

  28. Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 26:6469–6486

    Article  PubMed  CAS  Google Scholar 

  29. Saramaki A, Diermeier S, Kellner R, Laitinen H, Vaisanen S, Carlberg C (2009) Cyclical chromatin looping and transcription factor association on the regulatory regions of the p21 (CDKN1A) gene in response to 1alpha,25-dihydroxyvitamin D3. J Biol Chem 284:8073–8082

    Article  PubMed  CAS  Google Scholar 

  30. Zella LA, Kim S, Shevde NK, Pike JW (2007) Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 103:435–439

    Article  PubMed  CAS  Google Scholar 

  31. Krishnan V, Moore TL, Ma YL, Helvering LM, Frolik CA, Valasek KM, Ducy P, Geiser AG (2003) Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol Endocrinol 17:423–435

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka H, Seino Y (2004) Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition. J Steroid Biochem Mol Biol 89–90:343–345

    Article  PubMed  CAS  Google Scholar 

  33. Weissen-Plenz G, Nitschke Y, Rutsch F (2008) Mechanisms of arterial calcification: spotlight on the inhibitors. Adv Clin Chem 46:263–293

    Article  PubMed  CAS  Google Scholar 

  34. Milat F, Ng KW (2009) Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 310:52–62

    Article  PubMed  CAS  Google Scholar 

  35. Sroga GE, Karim L, Colon W, Vashishth D (2011) Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol Cel Proteomics. doi: 10:M110 006718

  36. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

  37. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809

    Article  PubMed  CAS  Google Scholar 

  38. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, Haussler CA, Jurutka PW (2012) The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 13:57–69

    Article  PubMed  CAS  Google Scholar 

  39. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  40. Keisala T, Minasyan A, Lou YR, Zou J, Kalueff AV, Pyykko I, Tuohimaa P (2009) Premature aging in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 115:91–97

    Article  PubMed  CAS  Google Scholar 

  41. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  PubMed  CAS  Google Scholar 

  42. Masuda S, Byford V, Arabian A, Sakai Y, Demay MB, St-Arnaud R, Jones G (2005) Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse. Endocrinology 146:825–834

    Article  PubMed  CAS  Google Scholar 

  43. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Broking E, Fehrenbach H, Wingen AM, Guran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G, Konrad M (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421

    Article  PubMed  CAS  Google Scholar 

  44. Gardiner EM, Baldock PA, Thomas GP, Sims NA, Henderson NK, Hollis B, White CP, Sunn KL, Morrison NA, Walsh WR, Eisman JA (2000) Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J 14:1908–1916

    Article  PubMed  CAS  Google Scholar 

  45. Wronski TJ, Halloran BP, Bikle DD, Globus RK, Morey-Holton ER (1986) Chronic administration of 1,25-dihydroxyvitamin D3: increased bone but impaired mineralization. Endocrinology 119:2580–2585

    Article  PubMed  CAS  Google Scholar 

  46. Dokoh S, Donaldson CA, Haussler MR (1984) Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: correlation with the 1,25-dihydroxyvitamin D3 receptor. Cancer Res 44:2103–2109

    PubMed  CAS  Google Scholar 

  47. Yamaoka K, Marion SL, Gallegos A, Haussler MR (1986) 1,25-Dihydroxyvitamin D3 enhances the growth of tumors in athymic mice inoculated with receptor rich osteosarcoma cells. Biochem Biophys Res Commun 139:1292–1298

    Article  PubMed  CAS  Google Scholar 

  48. Kream BE, Harrison JR, Krebsbach PH, Bogdanovic Z, Bedalov A, Pavlin D, Woody CO, Clark SH, Rowe D, Lichtler AC (1995) Regulation of type I collagen gene expression in bone. Connect Tissue Res 31:261–264

    Article  PubMed  CAS  Google Scholar 

  49. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G (2001) Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329

    Article  PubMed  Google Scholar 

  50. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D3–1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141

    Article  PubMed  CAS  Google Scholar 

  51. Lieben L, Carmeliet G, Masuyama R (2011) Calcemic actions of vitamin D: effects on the intestine, kidney and bone. Best Pract Res Clin Endocrinol Metab 25:561–572

    Article  PubMed  CAS  Google Scholar 

  52. Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Oh GT, Jeung EB, Lieben L, Bouillon R, Carmeliet G, Christakos S (2008) Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology 149:3196–3205

    Article  PubMed  CAS  Google Scholar 

  53. Meyer J, Fullmer CS, Wasserman RH, Komm BS, Haussler MR (1992) Dietary restriction of calcium, phosphorus, and vitamin D elicits differential regulation of the mRNAs for avian intestinal calbindin-D28k and the 1,25-dihydroxyvitamin D3 receptor. J Bone Miner Res 7:441–448

    Article  PubMed  CAS  Google Scholar 

  54. Haussler M, Nagode LA, Rasmussen H (1970) Induction of intestinal brush border alkaline phosphatase by vitamin D and identity with ca-ATPase. Nature 228:1199–1201

    Article  PubMed  CAS  Google Scholar 

  55. Wasserman RH, Brindak ME, Buddle MM, Cai Q, Davis FC, Fullmer CS, Gilmour RF Jr, Hu C, Mykkanen HM, Tapper DN (1990) Recent studies on the biological actions of vitamin D on intestinal transport and the electrophysiology of peripheral nerve and cardiac muscle. Prog Clin Biol Res 332:99–126

    PubMed  CAS  Google Scholar 

  56. Kutuzova GD, Sundersingh F, Vaughan J, Tadi BP, Ansay SE, Christakos S, Deluca HF (2008) TRPV6 is not required for 1alpha,25-dihydroxyvitamin D3-induced intestinal calcium absorption in vivo. Proc Natl Acad Sci USA 105:19655–19659

    Article  PubMed  CAS  Google Scholar 

  57. Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, Millan JL (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23:7525–7530

    Article  PubMed  CAS  Google Scholar 

  58. Leathers VL, Norman AW (1993) Evidence for calcium mediated conformational changes in calbindin-D28K (the vitamin D-induced calcium binding protein) interactions with chick intestinal brush border membrane alkaline phosphatase as studied via photoaffinity labeling techniques. J Cell Biochem 52:243–252

    Article  PubMed  CAS  Google Scholar 

  59. Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, Ebrahimi F, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA (2010) Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol 299:G467–G475

    Article  PubMed  CAS  Google Scholar 

  60. Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999) Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 343(pt 3):705–712

    Article  PubMed  CAS  Google Scholar 

  61. Khanal RC, Nemere I (2008) Endocrine regulation of calcium transport in epithelia. Clin Exp Pharmacol Physiol 35:1277–1287

    Article  PubMed  CAS  Google Scholar 

  62. Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619

    Article  PubMed  CAS  Google Scholar 

  63. Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G (2011) Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 414:557–562

    Article  PubMed  CAS  Google Scholar 

  64. Wang Y, Sun Z (2009) Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 54:810–817

    Article  PubMed  CAS  Google Scholar 

  65. Taketani Y, Segawa H, Chikamori M, Morita K, Tanaka K, Kido S, Yamamoto H, Iemori Y, Tatsumi S, Tsugawa N, Okano T, Kobayashi T, Miyamoto K, Takeda E (1998) Regulation of type II renal Na+-dependent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. Identification of a vitamin D-responsive element in the human NAPi-3 gene. J Biol Chem 273:14575–14581

    Article  PubMed  CAS  Google Scholar 

  66. Jurutka PW, Bartik L, Whitfield GK, Mathern DR, Barthel TK, Gurevich M, Hsieh JC, Kaczmarska M, Haussler CA, Haussler MR (2007) Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Miner Res 22(Suppl 2):V2–V10

    Article  PubMed  CAS  Google Scholar 

  67. Masuda M, Yamamoto H, Kozai M, Tanaka S, Ishiguro M, Takei Y, Nakahashi O, Ikeda S, Uebanso T, Taketani Y, Segawa H, Miyamoto K, Takeda E (2010) Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors. Biochem J 429:583–592

    Article  PubMed  CAS  Google Scholar 

  68. Segawa H, Aranami F, Kaneko I, Tomoe Y, Miyamoto K (2009) The roles of Na/Pi-II transporters in phosphate metabolism. Bone 45(Suppl 1):S2–S7

    Article  PubMed  CAS  Google Scholar 

  69. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    Article  PubMed  CAS  Google Scholar 

  70. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  PubMed  CAS  Google Scholar 

  71. Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, Teles R, Montoya D, Iyer SS, Bruns H, Lewinsohn DM, Hollis BW, Hewison M, Adams JS, Steinmeyer A, Zugel U, Cheng G, Jo EK, Bloom BR, Modlin RL (2011) Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med 3(104):104ra102

    Google Scholar 

  72. Cohen-Lahav M, Shany S, Tobvin D, Chaimovitz C, Douvdevani A (2006) Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant 21:889–897

    Article  PubMed  CAS  Google Scholar 

  73. Moreno J, Krishnan AV, Swami S, Nonn L, Peehl DM, Feldman D (2005) Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res 65:7917–7925

    Article  PubMed  CAS  Google Scholar 

  74. Kriebitzsch C, Verlinden L, Eelen G, van Schoor NM, Swart K, Lips P, Meyer MB, Pike JW, Boonen S, Carlberg C, Vitvitsky V, Bouillon R, Banerjee R, Verstuyf A (2011) 1,25-Dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine beta-synthase. J Bone Miner Res 26:2991–3000

    Article  PubMed  CAS  Google Scholar 

  75. Xiang W, Kong J, Chen S, Cao LP, Qiao G, Zheng W, Liu W, Li X, Gardner DG, Li YC (2005) Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 288:E125–E132

    Article  PubMed  CAS  Google Scholar 

  76. Audo I, Darjatmoko SR, Schlamp CL, Lokken JM, Lindstrom MJ, Albert DM, Nickells RW (2003) Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest Ophthalmol Vis Sci 44:4192–4199

    Article  PubMed  Google Scholar 

  77. Sidelnikov E, Bostick RM, Flanders WD, Long Q, Fedirko V, Shaukat A, Daniel CR, Rutherford RE (2010) Effects of calcium and vitamin D on MLH1 and MSH2 expression in rectal mucosa of sporadic colorectal adenoma patients. Cancer Epidemiol Biomarkers Prev 19:1022–1032

    Article  PubMed  CAS  Google Scholar 

  78. Kallay E, Pietschmann P, Toyokuni S, Bajna E, Hahn P, Mazzucco K, Bieglmayer C, Kato S, Cross HS (2001) Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperproliferation and DNA damage. Carcinogenesis 22:1429–1435

    Article  PubMed  CAS  Google Scholar 

  79. Zinser G, Packman K, Welsh J (2002) Vitamin D3 receptor ablation alters mammary gland morphogenesis. Development 129:3067–3076

    PubMed  CAS  Google Scholar 

  80. Egan JB, Thompson PA, Vitanov MV, Bartik L, Jacobs ET, Haussler MR, Gerner EW, Jurutka PW (2010) Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Mol Carcinog 49:337–352

    PubMed  CAS  Google Scholar 

  81. Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C, Kaufman B, Wolf I (2011) KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res 17:4254–4266

    Article  PubMed  CAS  Google Scholar 

  82. Manson JE, Mayne ST, Clinton SK (2011) Vitamin D and prevention of cancer—ready for prime time? N Engl J Med 364:1385–1387

    Article  PubMed  CAS  Google Scholar 

  83. Honkakoski P, Sueyoshi T, Negishi M (2003) Drug-activated nuclear receptors CAR and PXR. Ann Med 35:172–182

    Article  PubMed  CAS  Google Scholar 

  84. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316

    Article  PubMed  CAS  Google Scholar 

  85. Thompson PD, Jurutka PW, Whitfield GK, Myskowski SM, Eichhorst KR, Dominguez CE, Haussler CA, Haussler MR (2002) Liganded VDR induces CYP3A4 in small intestinal and colon cancer cells via DR3 and ER6 vitamin D responsive elements. Biochem Biophys Res Commun 299:730–738

    Article  PubMed  CAS  Google Scholar 

  86. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ (2002) Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 277:25125–25132

    Article  PubMed  CAS  Google Scholar 

  87. Echchgadda I, Song CS, Roy AK, Chatterjee B (2004) Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 65:720–729

    Article  PubMed  CAS  Google Scholar 

  88. Meyer MB, Goetsch PD, Pike JW (2012) VDR/RXR and TCF4/beta-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression. Mol Endocrinol 26:37–51

    Article  PubMed  CAS  Google Scholar 

  89. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  PubMed  CAS  Google Scholar 

  90. Kozoni V, Tsioulias G, Shiff S, Rigas B (2000) The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: differential effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis 21:999–1005

    Article  PubMed  CAS  Google Scholar 

  91. Cianferotti L, Cox M, Skorija K, Demay MB (2007) Vitamin D receptor is essential for normal keratinocyte stem cell function. Proc Natl Acad Sci USA 104:9428–9433

    Article  PubMed  CAS  Google Scholar 

  92. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545

    Article  PubMed  CAS  Google Scholar 

  93. Beaudoin GM 3rd, Sisk JM, Coulombe PA, Thompson CC (2005) Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc Natl Acad Sci USA 102:14653–14658

    Article  PubMed  CAS  Google Scholar 

  94. Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N (2009) Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem 284:23159–23168

    Article  PubMed  CAS  Google Scholar 

  95. Li M, Indra AK, Warot X, Brocard J, Messaddeq N, Kato S, Metzger D, Chambon P (2000) Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis. Nature 407:633–636

    Article  PubMed  CAS  Google Scholar 

  96. Thompson CC, Sisk JM, Beaudoin GM 3rd (2006) Hairless and Wnt signaling: allies in epithelial stem cell differentiation. Cell Cycle 5:1913–1917

    Article  PubMed  CAS  Google Scholar 

  97. Hsieh J-C, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC (2003) Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 278:38665–38674

    Article  PubMed  CAS  Google Scholar 

  98. Zarach JM, Beaudoin GM 3rd, Coulombe PA, Thompson CC (2004) The co-repressor hairless has a role in epithelial cell differentiation in the skin. Development 131:4189–4200

    Article  PubMed  CAS  Google Scholar 

  99. Potter GB, Zarach JM, Sisk JM, Thompson CC (2002) The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol Endocrinol 16:2547–2560

    Article  PubMed  CAS  Google Scholar 

  100. Hsieh JC, Slater SA, Whitfield GK, Dawson JL, Hsieh G, Sheedy C, Haussler CA, Haussler MR (2010) Analysis of hairless corepressor mutants to characterize molecular cooperation with the vitamin D receptor in promoting the mammalian hair cycle. J Cell Biochem 110:671–686

    Article  PubMed  CAS  Google Scholar 

  101. Yamamoto Y, Memezawa A, Takagi K, Ochiai E, Shindo M, Kato S (2009) A tissue-specific function by unliganded VDR. In: Abstracts from the 14th Workshop on Vitamin D, Brugge, Belgium, October 4–8, 2009, p 66

  102. Suzuki T, Tazoe H, Taguchi K, Koyama Y, Ichikawa H, Hayakawa S, Munakata H, Isemura M (2006) DNA microarray analysis of changes in gene expression induced by 1,25-dihydroxyvitamin D3 in human promyelocytic leukemia HL-60 cells. Biomed Res 27:99–109

    Article  PubMed  CAS  Google Scholar 

  103. Falzon M (1996) DNA sequences in the rat parathyroid hormone-related peptide gene responsible for 1,25-dihydroxyvitamin D3-mediated transcriptional repression. Mol Endocrinol 10:672–681

    Article  PubMed  CAS  Google Scholar 

  104. Cho YM, Woodard GL, Dunbar M, Gocken T, Jimenez JA, Foley J (2003) Hair-cycle-dependent expression of parathyroid hormone-related protein and its type I receptor: evidence for regulation at the anagen to catagen transition. J Invest Dermatol 120:715–727

    Article  PubMed  CAS  Google Scholar 

  105. Kragballe K (1997) The future of vitamin D in dermatology. J Am Acad Dermatol 37:S72–S76

    PubMed  CAS  Google Scholar 

  106. Zinser GM, Sundberg JP, Welsh J (2002) Vitamin D3 receptor ablation sensitizes skin to chemically induced tumorigenesis. Carcinogenesis 23:2103–2109

    Article  PubMed  CAS  Google Scholar 

  107. Ellison TI, Smith MK, Gilliam AC, MacDonald PN (2008) Inactivation of the vitamin D receptor enhances susceptibility of murine skin to UV-induced tumorigenesis. J Invest Dermatol 128:2508–2517

    Article  PubMed  CAS  Google Scholar 

  108. Costa EM, Blau HM, Feldman D (1986) 1,25-Dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology 119:2214–2220

    Article  PubMed  CAS  Google Scholar 

  109. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986

    Article  PubMed  CAS  Google Scholar 

  110. Abramovitch S, Dahan-Bachar L, Sharvit E, Weisman Y, Ben Tov A, Brazowski E, Reif S (2011) Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut 60:1728–1737

    Article  PubMed  CAS  Google Scholar 

  111. Sherman MH, Downes M, Evans RM (2012) Nuclear receptors as modulators of the tumor microenvironment. Cancer Prev Res (Phila) 5:3–10

    Article  CAS  Google Scholar 

  112. Li YC, Bergwitz C, Jüppner H, Demay MB (1997) Cloning and characterization of the vitamin D receptor from Xenopus laevis. Endocrinology 138:2347–2353

    Article  PubMed  CAS  Google Scholar 

  113. Krasowski MD, Ai N, Hagey LR, Kollitz EM, Kullman SW, Reschly EJ, Ekins S (2011) The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. BMC Biochem 12:5

    Article  PubMed  CAS  Google Scholar 

  114. Dokoh S, Llach F, Haussler MR (1982) 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D: new ultrasensitive and accurate assays. In: Norman AW, Schaefer K, von Herrath D, Grigoleit H-G (eds) Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. Walter de Gruyter, Berlin, pp 743–749

    Google Scholar 

  115. Whitfield GK, Dang HTL, Schluter SF, Bernstein RM, Bunag T, Manzon LA, Hsieh G, Dominguez CE, Youson JH, Haussler MR, Marchalonis JJ (2003) Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Endocrinology 144:2704–2716

    Article  PubMed  CAS  Google Scholar 

  116. Kobayashi T, Takeuchi A, Okano T (1991) An evolutionary aspect in vertebrates from the viewpoint of vitamin D3 metabolism. In: Norman AW, Bouillon R, Thomasset M (eds) Vitamin D: gene regulation, structure–function analysis and clinical application. Walter de Gruyter, New York, pp 679–680

    Google Scholar 

  117. Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliewer SA, Lambert MH, Moore JT (2002) Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 16:977–986

    Article  PubMed  CAS  Google Scholar 

  118. Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh JC, Slater S, Jurutka PW (2008) Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev 66:S98–S112

    Article  PubMed  Google Scholar 

  119. Bartik L, Whitfield GK, Kaczmarska M, Lowmiller CL, Moffet EW, Furmick JK, Hernandez Z, Haussler CA, Haussler MR, Jurutka PW (2010) Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. J Nutr Biochem 21:1153–1161

    Article  PubMed  CAS  Google Scholar 

  120. Haussler MR, Jurutka PW, Mizwicki M, Norman AW (2011) Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)vitamin D: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 25:543–559

    Article  PubMed  CAS  Google Scholar 

  121. Liu SM, Koszewski N, Lupez M, Malluche HH, Olivera A, Russell J (1996) Characterization of a response element in the 5′-flanking region of the avian (chicken) PTH gene that mediates negative regulation of gene transcription by 1,25-dihydroxyvitamin D3 and binds the vitamin D3 receptor. Mol Endocrinol 10:206–215

    Article  PubMed  CAS  Google Scholar 

  122. Haussler MR, Zerwekh JE, Hesse RH, Rizzardo E, Pechet MM (1973) Biological activity of 1alpha-hydroxycholecalciferol, a synthetic analog of the hormonal form of vitamin D3. Proc Natl Acad Sci USA 70:2248–2252

    Article  PubMed  CAS  Google Scholar 

  123. Brumbaugh PF, Haussler DH, Bursac KM, Haussler MR (1974) Filter assay for 1α,25-dihydroxyvitamin D3: utilization of the hormone’s target tissue chromatin receptor. Biochemistry (Mosc) 13:4097–4102

    Article  Google Scholar 

  124. Allegretto EA, Pike JW, Haussler MR (1987) Immunochemical detection of unique proteolytic fragments of the chick 1,25-dihydroxyvitamin D3 receptor. J Biol Chem 262:1312–1319

    PubMed  CAS  Google Scholar 

  125. Mangelsdorf DJ, Koeffler HP, Donaldson CA, Pike JW, Haussler MR (1984) 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): receptor-mediated maturation to macrophage-like cells. J Cell Biol 98:391–398

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Haussler.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haussler, M.R., Whitfield, G.K., Kaneko, I. et al. Molecular Mechanisms of Vitamin D Action. Calcif Tissue Int 92, 77–98 (2013). https://doi.org/10.1007/s00223-012-9619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9619-0

Keywords

Navigation