Skip to main content

Advertisement

Log in

The Levels of Somatostatin Receptors in Causative Tumors of Oncogenic Osteomalacia Are Insufficient for Their Agonist to Normalize Serum Phosphate Levels

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Oncogenic osteomalacia (OOM) is a rare disease characterized by renal phosphate wasting and osteomalacia and is caused by the secretion of fibroblast growth factor 23 (FGF-23) from causative tumors. Scintigraphy with octreotide, which binds to somatostatin receptors (SSTRs), is a useful way to locate causative tumors in OOM patients. However, the therapeutic effects of octreotide acetate are still controversial. Two OOM patients were administered octreotide acetate intramuscularly. Ten causative OOM tumors, including two resected from the patients participating in the octreotide administration study, were examined for expression of genes encoding SSTRs by quantitative real-time RT-PCR and immunohistochemistry. Octreotide therapy did not improve hypophosphatemia in either case, despite temporal decreases in FGF-23 levels in one patient. The mean expression levels of SSTR1, SSTR3, and SSTR5 were similar in the OOM and non-OOM tumors. Expression of SSTR2 was significantly higher in the OOM tumors than in the non-OOM tumors. Immunohistochemical examinations revealed the presence of SSTR2A, SSTR2B, and SSTR5 in both the OOM and non-OOM tumors. The expression of SSTR genes in OOM tumors contributes to positive imaging using octreotide scintigraphy. However, the levels of SSTRs seem to be insufficient for the octreotide therapy to improve hypophosphatemia. Further studies are needed to clarify the mechanisms by which FGF-23 secretion from OOM tumors is suppressed by octreotide acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  2. White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Juppner H, Econs MJ (2001) The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86:497–500

    Article  CAS  PubMed  Google Scholar 

  3. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro OM, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    CAS  PubMed  Google Scholar 

  5. Imanishi Y, Inaba M, Kawata T, Nishizawa Y (2009) Animal models of hyperfunctioning parathyroid diseases for drug development. Expert Opin Drug Discov 4:727–740

    Article  CAS  Google Scholar 

  6. Prader A, Illig R, Uehlinger E, Stalder G (1959) Rachitis infolge Knochentumors. Helv Paediatr Acta 14:554–565

    CAS  PubMed  Google Scholar 

  7. Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, Econs MJ, Inwards CY, Jan de Beur SM, Mentzel T, Montgomery E, Michal M, Miettinen M, Mills SE, Reith JD, O’Connell JX, Rosenberg AE, Rubin BP, Sweet DE, Vinh TN, Wold LE, Wehrli BM, White KE, Zaino RJ, Weiss SW (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30

    Article  PubMed  Google Scholar 

  8. Nguyen BD, Wang EA (1999) Indium-111 pentetreotide scintigraphy of mesenchymal tumor with oncogenic osteomalacia. Clin Nucl Med 24:130–131

    Article  CAS  PubMed  Google Scholar 

  9. Seufert J, Ebert K, Muller J, Eulert J, Hendrich C, Werner E, Schuuze N, Schulz G, Kenn W, Richtmann H, Palitzsch KD, Jakob F (2001) Octreotide therapy for tumor-induced osteomalacia. N Engl J Med 345:1883–1888

    Article  CAS  PubMed  Google Scholar 

  10. Rhee Y, Lee JD, Shin KH, Lee HC, Huh KB, Lim SK (2001) Oncogenic osteomalacia associated with mesenchymal tumour detected by indium-111 octreotide scintigraphy. Clin Endocrinol (Oxf) 54:551–554

    Article  CAS  Google Scholar 

  11. De Beur SM, Finnegan RB, Vassiliadis J, Cook B, Barberio D, Estes S, Manavalan P, Petroziello J, Madden SL, Cho JY, Kumar R, Levine MA, Schiavi SC (2002) Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 17:1102–1110

    Article  PubMed  Google Scholar 

  12. Moran M, Paul A (2002) Octreotide scanning in the detection of a mesenchymal tumour in the pubic symphysis causing hypophosphataemic osteomalacia. Int Orthop 26:61–62

    Article  CAS  PubMed  Google Scholar 

  13. Garcia CA, Spencer RP (2002) Bone and In-111 octreotide imaging in oncogenic osteomalacia: a case report. Clin Nucl Med 27:582–583

    Article  PubMed  Google Scholar 

  14. Auethavekiat P, Roberts JR, Biega TJ, Toney MO, Christensen RS, Belnap CM, Berenberg JL (2005) Case 3. Oncogenic osteomalacia associated with hemangiopericytoma localized by octreotide scan. J Clin Oncol 23:3626–3628

    Article  PubMed  Google Scholar 

  15. Nguyen BD (2006) Coexisting hyperparathyroidism and oncogenic osteomalacia: sestamibi and somatostatin receptor scintigraphy. Clin Nucl Med 31:648–651

    Article  PubMed  Google Scholar 

  16. Robertson A, Mansberg R, Mansberg V, Van der Wall H, Hooper M (2007) Tumor-induced osteomalacia: a case of diagnostic dilemma. Clin Nucl Med 32:631–634

    Article  PubMed  Google Scholar 

  17. Elston MS, Stewart IJ, Clifton-Bligh R, Conaglen JV (2007) A case of oncogenic osteomalacia with preoperative secondary hyperparathyroidism: description of the biochemical response of FGF23 to octreotide therapy and surgery. Bone 40:236–241

    Article  CAS  PubMed  Google Scholar 

  18. Duet M, Kerkeni S, Sfar R, Bazille C, Liote F, Orcel P (2008) Clinical impact of somatostatin receptor scintigraphy in the management of tumor-induced osteomalacia. Clin Nucl Med 33:752–756

    Article  PubMed  Google Scholar 

  19. Harish S, Jurriaans E, Jan E, Sur M, Colterjohn N (2008) Giant cell tumour of soft tissue causing oncogenic osteomalacia: report demonstrating the use of octreotide scintigraphy in tumour localization. Clin Radiol 63:101–107

    Article  CAS  PubMed  Google Scholar 

  20. Reubi JC, Waser B, Laissue JA, Gebbers JO (1996) Somatostatin and vasoactive intestinal peptide receptors in human mesenchymal tumors: in vitro identification. Cancer Res 56:1922–1931

    CAS  PubMed  Google Scholar 

  21. Jan de Beur SM, Streeten EA, Civelek AC, McCarthy EF, Uribe L, Marx SJ, Onobrakpeya O, Raisz LG, Watts NB, Sharon M, Levine MA (2002) Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet 359:761–763

    Article  CAS  PubMed  Google Scholar 

  22. Yoshioka K, Nagata R, Ueda M, Yamaguchi T, Konishi Y, Hosoi M, Inoue T, Yamanaka K, Iwai Y, Sato T (2006) Phosphaturic mesenchymal tumor with symptoms related to osteomalacia that appeared one year after tumorectomy. Intern Med 45:1157–1160

    Article  PubMed  Google Scholar 

  23. van Boekel G, Ruinemans-Koerts J, Joosten F, Dijkhuizen P, van Sorge A, de Boer H (2008) Tumor producing fibroblast growth factor 23 localized by two-staged venous sampling. Eur J Endocrinol 158:431–437

    Article  PubMed  Google Scholar 

  24. Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T, Goto H, Ohashi H, Koyano HM, Mochizuki R, Miki T, Inaba M, Nishizawa Y (2006) Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci 78:2295–2301

    Article  CAS  PubMed  Google Scholar 

  25. Park YK, Unni KK, Beabout JW, Hodgson SF (1994) Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions. J Korean Med Sci 9:289–298

    CAS  PubMed  Google Scholar 

  26. Kumar R (2000) Tumor-induced osteomalacia and the regulation of phosphate homeostasis. Bone 27:333–338

    Article  CAS  PubMed  Google Scholar 

  27. Kurajoh M, Inaba M, Yamada S, Imanishi Y, Tsuchida T, Ishimura E, Nishizawa Y (2008) Association of increased active PTH(1–84) fraction with decreased GFR and serum Ca in predialysis CRF patients: modulation by serum 25-OH-D. Osteoporos Int 19:709–716

    Article  CAS  PubMed  Google Scholar 

  28. Inaba M, Nakatsuka K, Imanishi Y, Watanabe M, Mamiya Y, Ishimura E, Nishizawa Y (2004) Technical and clinical characterization of the Bio-PTH (1–84) immunochemiluminometric assay and comparison with a second-generation assay for parathyroid hormone. Clin Chem 50:385–390

    Article  CAS  PubMed  Google Scholar 

  29. Taniyama Y, Suzuki T, Mikami Y, Moriya T, Satomi S, Sasano H (2005) Systemic distribution of somatostatin receptor subtypes in human: an immunohistochemical study. Endocr J 52:605–611

    Article  CAS  PubMed  Google Scholar 

  30. Patel YC, Greenwood M, Kent G, Panetta R, Srikant CB (1993) Multiple gene transcripts of the somatostatin receptor SSTR2: tissue selective distribution and cAMP regulation. Biochem Biophys Res Commun 192:288–294

    Article  CAS  PubMed  Google Scholar 

  31. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  CAS  PubMed  Google Scholar 

  32. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ (1996) Octreotide. N Engl J Med 334:246–254

    Article  CAS  PubMed  Google Scholar 

  33. Habra MA, Jimenez C, Huang SC, Cote GJ, Murphy WA Jr, Gagel RF, Hoff AO (2008) Expression analysis of fibroblast growth factor-23, matrix extracellular phosphoglycoprotein, secreted frizzled-related protein-4, and fibroblast growth factor-7: identification of fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein as major factors involved in tumor-induced osteomalacia. Endocr Pract 14:1108–1114

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by two Grant-in-Aids for Scientific Research (C) (20591101 to Y. I. and 20590980 to M. I. and Y. I.), a research grant from the Osaka Kidney Foundation (OKF07-0003 to Y. I.), and a grant from The Kidney Foundation, Japan (JKFB09-7 to Y. I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Imanishi.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, A., Imanishi, Y., Kobayashi, K. et al. The Levels of Somatostatin Receptors in Causative Tumors of Oncogenic Osteomalacia Are Insufficient for Their Agonist to Normalize Serum Phosphate Levels. Calcif Tissue Int 86, 455–462 (2010). https://doi.org/10.1007/s00223-010-9369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9369-9

Keywords

Navigation