Skip to main content

Advertisement

Log in

Transient Exposure to PTHrP (107-139) Exerts Anabolic Effects through Vascular Endothelial Growth Factor Receptor 2 in Human Osteoblastic Cells In Vitro

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Intermittent administration of the N-terminal fragment of parathyroid hormone (PTH) and PTH-related protein (PTHrP) induces bone anabolic effects. However, the effects of the C-terminal domain of PTHrP on bone turnover remain controversial. We examined the putative mechanisms whereby this PTHrP domain can affect osteoblastic differentiation, using human osteosarcoma MG-63 cells and osteoblastic cells from human trabecular bone. Intermittent exposure to PTHrP (107-139), within 10-100 nM, for only ≤24 hours during cell growth stimulated alkaline phosphatase (ALP) and Runt homology domain protein (Runx2) activities as well as osteocalcin (OC) and osteoprotegerin (OPG) expression but inhibited receptor activator of nuclear factor κB (NF-κB) ligand. Continuous exposure to this PTHrP peptide reversed these effects. The stimulatory effects of transient treatment with PTHrP (107-139) on OC mRNA and/or OPG protein expression were unaffected by a neutralizing anti-insulin-like growth factor I antibody or [Asn10, Leu11, d-Trp12]PTHrP (7-34) in these cells. On the other hand, the former antibody and the latter PTHrP antagonist abrogated the PTHrP (1-36)-induced increase in these osteoblastic products. Transient exposure to PTHrP (107-139), in contrast to PTHrP (1-36), stimulated vascular endothelial growth factor receptor 2 (VEGFR2) mRNA levels in these cells. Moreover, induction of ALP activity as well as OC and OPG expression by PTHrP (107-139) was blunted by SU5614, a permeable tyrosine kinase inhibitor of VEGFR2. Protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors abolished the PTHrP (107-139)-stimulated VEGFR2 and OPG mRNA levels in these cells. These results indicate that intermittent exposure to PTHrP (107-139) exerts potential anabolic effects through the PKC/ERK pathway and, subsequently, VEGFR2 upregulation in vitro in human osteoblastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Strewler GJ (2000) The physiology of parathyroid hormone-related protein. N Engl J Med 342:177–185

    Article  PubMed  CAS  Google Scholar 

  2. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289

    PubMed  CAS  Google Scholar 

  3. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize L, Ho C, Mulligan RC, Abou Samra AB, Jüppner H, Segre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian Hedgehog-regulated bone growth. Science 273:663–666

    Article  PubMed  CAS  Google Scholar 

  4. Kartsogiannis V, Moseley J, McKelvie B, Chou ST, Hards DK, Ng KW, Martin TJ, Zhou H (1997) Temporal expression of PTHrP during endochondral bone formation in mouse and intramembranous bone formation in an in vivo rabbit model. Bone 21:385–392

    Article  PubMed  CAS  Google Scholar 

  5. Lomri A, de Pollak C, Sebag M, Goltzman D, Kremer R, Marie PJ (1997) Expression of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor in newborn human calvaria osteoblastic cells. Eur J Endocrinol 136:640–648

    Article  PubMed  CAS  Google Scholar 

  6. McCauley LK, Koh AJ, Beecher CA, Cui Y, Rosol TJ, Franceschi RT (1996) PTH/PTHrP receptor is temporally regulated during osteoblast differentiation and is associated with collagen synthesis. J Cell Biochem 61:638–647

    Article  PubMed  CAS  Google Scholar 

  7. Martínez P, Esbrit P, Rodrigo A, Alvarez-Arroyo MV, Martínez ME (2002) Age-related changes in parathyroid hormone-related protein and vascular endothelial growth factor in human osteoblastic cells. Osteoporosis Int 13:874–881

    Article  Google Scholar 

  8. Carpio L, Gladu J, Goltzman D, Rabbani SA (2001) Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways. Am J Physiol Endocrinol Metab 281:E489–E499

    PubMed  CAS  Google Scholar 

  9. Miao D, Tong X-K, Chan GK, Panda D, McPherson PS, Goltzman D (2001) Parathyroid hormone-related peptide stimulates osteogenic cell proliferation through protein kinase C activation of the ras/mitogen-activated protein kinase signaling pathway. J Biol Chem 276:32204–32213

    Article  PubMed  CAS  Google Scholar 

  10. Martínez ME, García-Ocaña A, Sánchez M, Medina S, del Campo T, Valín A, Sánchez-Cabezudo MJ, Esbrit P (1997) C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells. J Bone Miner Res 12:778–785

    Article  PubMed  Google Scholar 

  11. Valín A, García-Ocaña A, de Miguel F, Sarasa JL, Esbrit P (1997) Antiproliferative effect of the C-terminal fragments of parathyroid hormone-related protein, PTHrP (107–111) and (107–139), on osteoblastic osteosarcoma cells. J Cell Physiol 170:209–215

    Article  PubMed  Google Scholar 

  12. Valín A, de Miguel F, García-Ocaña A, Esbrit P (1998) Parathyroid hormone-related protein (107–139) decreases alkaline phosphatase in osteoblastic osteosarcoma cells UMR 106 by a protein kinase C-dependent pathway. Calcif Tissue Int 65:148–151

    Google Scholar 

  13. Stewart AF (2002) Hyperparathyroidism, humoral hypercalcemia of malignancy, and the anabolic actions of parathyroid hormone and parathyroid hormone-related protein on the skeleton. J Bone Miner Res 17:758–762

    Article  PubMed  Google Scholar 

  14. Horwitz MJ, Tedesco MB, Gundberg C, García-Ocaña A, Stewart AF (2003) Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 88:569–575

    Article  PubMed  CAS  Google Scholar 

  15. Rouffet J, Coxam V, Gaumet N, Barlet JP (1994) Preserved bone mass in ovariectomized rats treated with parathyroid hormone-related peptide (1-34) and (107-111) fragments. Reprod Nutr Dev 34:473–481

    PubMed  CAS  Google Scholar 

  16. Stewart AF, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM (2000) Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1–34, parathyroid hormone-related protein 1–36, and SDZ-parathyroid hormone 893. J Bone Miner Res 15:1517–1525

    Article  PubMed  CAS  Google Scholar 

  17. Bikle DD, Sakata T, Leary C, Elalieh H, Ginzinger D, Rosen CJ, Beamer W, Majumdar S, Halloran BP (2002) Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res 17:1570–1578

    Article  PubMed  CAS  Google Scholar 

  18. Canalis E, McCarthy TL, Centrella M (1990) Differential effects of continuous and transient treatment with parathyroid hormone-related peptide (PTHrP) on bone collagen synthesis. Endocrinology 126:1806–1812

    PubMed  CAS  Google Scholar 

  19. Cornish J, Callon KE, Nicholson GC, Reid IR (1997) Parathyroid hormone-related protein (107–139) inhibits bone resorption in vivo. Endocrinology 138:1299–1304

    Article  PubMed  CAS  Google Scholar 

  20. Fenton AJ, Kemp BE, Kent GN, Moseley JM, Zheng M-H, Rowe DJ, Britto JM, Martin TJ, Nicholson GC (1991) A carboxyl-terminal peptide from the parathyroid hormone-related protein inhibits bone resorption by osteoclasts. Endocrinology 129:1762–1768

    PubMed  CAS  Google Scholar 

  21. Miao D, Su H, He B, Gao J, Xia Q, Goltzman D, Karaplis AC (2005) Deletion of the mid- and carboxyl regions of PTHrP produces growth retardation and early senescence in mice [abstract]. J Bone Miner Res 20(suppl 1):S14

    Google Scholar 

  22. Cornish J, Callon KE, Lin C, Xiao C, Moseley JM, Reid IR (1999) Stimulation of osteoblast proliferation by C-terminal fragments of parathyroid hormone-related protein. J Bone Miner Res 14:915–922

    Article  PubMed  CAS  Google Scholar 

  23. Valín A, Guillén C, Esbrit P (2001) C-terminal parathyroid hormone-related protein (PTHrP) (107–139) stimulates intracellular Ca2+ through a receptor different from the type 1 PTH/PTHrP receptor in osteoblastic osteosarcoma UMR 106 cells. Endocrinology 142:2752–2759

    Article  PubMed  Google Scholar 

  24. Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21:183–192

    Article  PubMed  CAS  Google Scholar 

  25. Esbrit P, Alvarez-Arroyo MV, de Miguel F, Martín O, Martínez ME, Caramelo C (2000) C-terminal parathyroid hormone-related protein increases vascular endothelial growth factor in human osteoblastic cells. J Am Soc Nephrol 11:1085–1092

    PubMed  CAS  Google Scholar 

  26. Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A (1997) Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 99:2961–2970

    Article  PubMed  CAS  Google Scholar 

  27. Locklin RM, Khosla S, Turner RT, Riggs BL (2003) Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 89:180–190

    Article  PubMed  CAS  Google Scholar 

  28. Schiller PC, D’ippolito G, Roos BA, Howard GA (1999) Anabolic or catabolic responses of MC3T3-E1 osteoblastic cells to parathyroid hormone depend on time and duration of treatment. J Bone Miner Res 14:1504–1512

    Article  PubMed  CAS  Google Scholar 

  29. Bilbe G, Roberts E, Birch M, Evans DB (1996) PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 19:437–445

    Article  PubMed  CAS  Google Scholar 

  30. Guillén C, Martínez P, de Gortázar AR, Martínez ME, Esbrit P (2002) Both N- and C-terminal domains of parathyroid hormone-related protein increase interleukin-6 y NF-κB activation in osteoblastic cells. J Biol Chem 277:28109–28117

    Article  PubMed  CAS  Google Scholar 

  31. Martínez P, Moreno I, De Miguel F, Vila V, Esbrit P, Martínez ME (2001) Changes in osteocalcin response to 1,25(OH)2D3 stimulation and basal VDR expression in human osteoblastic cells according to donor age and skeletal origin. Bone 29:35–41

    Article  PubMed  Google Scholar 

  32. Alvarez-Arroyo MV, Yagüe S, Wenger RM, Rich DH, Jiménez S, González-Pacheco FR, Castilla MA, Deudero JJP, Caramelo C (2002) Cyclophilin mediated pathways in the effect of cyclosporin A on endothelial cells: role of vascular growth factor. Circ Res 91:202–209

    Article  PubMed  CAS  Google Scholar 

  33. Komori T, Kishimoto T (1998) Cbfa1 in bone development. Curr Opin Genet Dev 8:494–499

    Article  PubMed  CAS  Google Scholar 

  34. Abou-Samra A-B, Jüppner H, Force T, Freeman MW, Kong X-F, Schipani E, Ureña P, Richards J, Bonventre JV, Potts JT Jr, Kronenberg HM, Segre GV (1992) Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide for rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 89:2732–2736

    Article  PubMed  CAS  Google Scholar 

  35. Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL (2000) The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141:4768–4776

    Article  PubMed  CAS  Google Scholar 

  36. Thomas GP, Baker SUK, Eisman JA, Gardiner EM (2001) Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol 170:451–460

    Article  PubMed  CAS  Google Scholar 

  37. Nutt RF, Caulfield MP, Levy JJ, Gibbons SW, Rosenblatt M, McKee RL (1990) Removal of partial agonism from parathyroid hormone (PTH)-related protein-(7-34)NH2 by substitution of PTH amino acids at positions 10 and 11. Endocrinology 127:491–493

    Article  PubMed  CAS  Google Scholar 

  38. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophy cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  PubMed  CAS  Google Scholar 

  39. Wang DS, Yamazaki K, Nohtomi K, Shizume K, Ohsumi K, Shibuya M, Demura H, Sato K (1996) Increase of vascular endothelial growth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblast-like cells. J Bone Miner Res 11:472–479

    Article  PubMed  CAS  Google Scholar 

  40. Mandelin J, Li TF, Liljestrom M, Kroon ME, Hanemaaijer R, Santavirta S, Konttinen YT (2003) Imbalance of RANKL/RANK/OPG system in interface tissue in loosening of total hip replacement. J Bone Joint Surg Br 85:1196–1201

    Article  PubMed  CAS  Google Scholar 

  41. Deckers MML, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Löwik CWGM (2000) Expression of vascular endothelial growth factor and their receptors during osteoblast differentiation. Endocrinology 141:1667–1674

    Article  PubMed  CAS  Google Scholar 

  42. Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M (2003) TSH is a negative regulator of skeletal remodeling. Cell 115:151–162

    Article  PubMed  CAS  Google Scholar 

  43. Hiltunen MO, Ruuskanen M, Huuskonen J, Mahonen AJ, Ahonen M, Rutanen J, Kosma VM, Mahonen A, Kroger H, Yla-Herttuala S (2003) Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J 17:1147–1149

    PubMed  CAS  Google Scholar 

  44. Yang X, Hallday D, Onyia JE, Martin TJ, Chandrasekhar S (2002) Protein kinase C is a mediator of the synthesis and secretion of osteoprotegerin in osteoblast-like cells. Biochem Biophys Res Commun 290:42–46

    Article  PubMed  CAS  Google Scholar 

  45. Yagüe S, Caramelo C, Berruguete R, Alvarez-Arroyo MV (2004) PI3-K/AKT and reactive oxygen species (ROS) signaling pathways are implicated in the regulation of the receptor 2 of vascular endothelial growth factor (VEGFR2) by cyclosporin A (CsA) [abstract]. J Am Soc Nephrol 15:407A

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are indebted to I. Torres, PhD (Instituto Ramón y Cajal, Madrid), and N. Vilaboa, PhD (Laboratorio de Metabolismo Óseo, Hospital Universitario La Paz, Madrid), for supplying the anti-IGF-I antibody and hOB cell cultures, respectively. This work was supported in part by grants from the Instituto de Salud Carlos III (C03/08, PI050363, and PI050117), Ministerio de Educación y Ciencia of Spain (SAF2005–05254), and Comunidad Autónoma de Madrid (GR/SAL/0417/2004) and by two awards, from the Sociedad Española de Investigaciones Óseas y Metabolismo Mineral (SEIOMM)-Italfármaco (Alcobendas, Spain) and SEIOMM-Fundación Española de Productos Químicos y Farmacéuticos (Bilbao, Spain). A. R. de G. and V. A. are fellows of Fundación Conchita Rábago. A. R. de G. was the recipient of a travel stipend from SEIOMM to attend the American Society for Bone and Mineral Research meeting in Seattle (2004). M.V.A-A. is the recipient of a research contract from Institute Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Esbrit.

Additional information

A. R. de Gortázar and V. Alonso contributed equally to this work.

This work was presented in part at the International Conference on Progress in Bone and Mineral Research, November 27–29, 2003, Vienna, Austria (published in Bone 33:S17, 2003); at the XLI Congress of the European Renal Association, May 15–18, 2004, Lisbon, Portugal; and at the 26th Annual Meeting of the American Society for Bone and Mineral Research, October 1–5, 2004, Seattle, WA (published in J Bone Miner Res 19[suppl 1]:S194, 2004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gortázar, A.R., Alonso, V., Alvarez-Arroyo, M.V. et al. Transient Exposure to PTHrP (107-139) Exerts Anabolic Effects through Vascular Endothelial Growth Factor Receptor 2 in Human Osteoblastic Cells In Vitro . Calcif Tissue Int 79, 360–369 (2006). https://doi.org/10.1007/s00223-006-0099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0099-y

Keywords

Navigation