Skip to main content
Log in

LC–MS analysis of low molecular weight organic acids derived from root exudation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive method for quantification of citric, fumaric, malic, malonic, oxalic, trans aconitic, and succinic acid in soil- and root-related samples is presented. The method is based on a novel, fast, and simple esterification procedure and subsequent analysis via liquid chromatography–mass spectrometry. Derivatization comprises in situ generation of HCl, which catalyzes the Fischer esterification with benzyl alcohol. As a key advance, the esterification with the aromate allows reversed-phase separation and improves electrospray ionization efficiency. The method provided procedural detection limits of 1 nM for citric, 47 nM for fumaric, 10 nM for malic, 10 nM for malonic, 16 nM for oxalic, 15 nM for succinic, and 2 nM for aconitic acid utilizing 500 μL of liquid sample. The working range was 3 nM to 10 μM for citric acid, 158 nM to 10 μM for fumaric acid, 34 nM to 10 μM for malic acid, 33 nM to 10 μM for malonic acid, 53 nM to 10 μM for oxalic acid, 48 nM to 10 μM for succinic acid, and 6 nM to 10 μM for aconitic acid. Quantification of the analytes in soil-related samples was performed via external calibration of the entire procedure utilizing 13C-labeled oxalic and citric acid as internal standards. The robustness of the method was tested with soil extracts and samples from hydroponic experiments. The latter concerned the regulation of phosphorus solubilization via plant root exudation of citric, malic, and oxalic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41(3):449–457

    Article  CAS  Google Scholar 

  2. Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils—misconceptions and knowledge gaps. Plant Soil 248(1–2):31–41

    Article  CAS  Google Scholar 

  3. Uren NC (2007) Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC, Boca Raton

    Google Scholar 

  4. Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC, Boca Raton

    Google Scholar 

  5. Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166(2):247–257

    Article  CAS  Google Scholar 

  6. Gerke J, Beißner L, Römer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163(2):207–212

    Article  CAS  Google Scholar 

  7. Jones DL, Eldhuset T, De Wit HA, Swensen B (2001) Aluminium effects on organic acid mineralization in a Norway spruce forest soil. Soil Biol Biochem 33(9):1259–1267

    Article  CAS  Google Scholar 

  8. Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37(11):2046–2054

    Article  Google Scholar 

  9. Puschenreiter M, Wenzel WW, Wieshammer G, Fitz WJ, Wieczorek S, Kanitsar K, Köllensperger G (2005) Novel micro-suction-cup design for sampling soil solution at defined distances from roots. J Plant Nutr Soil Sci 168(3):386–391

    Article  CAS  Google Scholar 

  10. Tsai YI, Hsieh L, Weng T, Ma Y, Kuo S (2008) A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography. Anal Chim Acta 626(1):78–88

    Article  CAS  Google Scholar 

  11. Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 99(3–4):169–198

    Article  CAS  Google Scholar 

  12. Yang L, Yu LE (2008) Measurements of oxalic acid, oxalates, malonic acid, and malonates in atmospheric particulates. Environ Sci Technol 42(24):9268–9275

    Article  CAS  Google Scholar 

  13. Kakola J, Alen R (2006) A fast method for determining low-molecular-mass aliphatic carboxylic acids by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Sep Sci 29(13):1996–2003

    Article  CAS  Google Scholar 

  14. Nisperos-Carriedo MO, Buslig BS, Shaw PE (1992) Simultaneous detection of dehydroascorbic, ascorbic, and some organic acids in fruits and vegetables by HPLC. J Agric Food Chem 40(7):1127–113

    Article  CAS  Google Scholar 

  15. Ohkawa H (1985) Gas chromatographic determination of oxalic acid in foods. J Assoc Off Anal Chem 68(1):108–111

    CAS  Google Scholar 

  16. Holmes RP, Kennedy M (2000) Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int 57(4):1662–1667

    Article  CAS  Google Scholar 

  17. Dabek-Zlotorzynska E, Piechowski M, McGrath M, Lai EPC (2001) Determination of low-molecular-mass carboxylic acids in atmospheric aerosol and vehicle emission samples by capillary electrophoresis. J Chromatogr A 910(2):331–345

    Article  CAS  Google Scholar 

  18. Klampfl CW (2007) Determination of organic acids by CE and CEC methods. Electrophoresis 28(19):3362–3378

    Article  CAS  Google Scholar 

  19. Kenney BF (1991) Determination of organic acids in food samples by capillary electrophoresis. J Chromatogr 546:423

    Article  CAS  Google Scholar 

  20. Galli V, Barbas C (2004) Capillary electrophoresis for the analysis of short-chain organic acids in coffee. J Chromatogr A 1032(1–2):299–304

    CAS  Google Scholar 

  21. Klampfl CW, Katzmayr MU (1998) Determination of low-molecular-mass anionic compounds in beverage samples using capillary zone electrophoresis with simultaneous indirect ultraviolet and conductivity detection. J Chromatogr A 822(1):117–123

    Article  CAS  Google Scholar 

  22. Garcia A, Olmo B, Lopez-Gonzalvez A, Cornejo L, Rupérez FJ, Barbas C (2008) Capillary electrophoresis for short chain organic acids in faeces. Reference values in a Mediterranean elderly population. J Pharm Biomed Anal 46(2):356–361

    Article  CAS  Google Scholar 

  23. Hagberg J (2003) Analysis of low-molecular-mass organic acids using capillary zone electrophoresis–electrospray ionization mass spectrometry. J Chromatogr A 988:127–133

    Article  CAS  Google Scholar 

  24. Ross KL, Tu TT, Smith S, Dalluge JJ (2007) Profiling of organic acids during fermentation by ultraperformance liquid chromatography–tandem mass spectrometry. Anal Chem 79(13):4840–4844

    Article  CAS  Google Scholar 

  25. Chen Z, Kim KR, Owens G, Naidu R (2008) Determination of carboxylic acids from plant root exudates by ion exclusion chromatography with ESI–MS. Chromatographia 67(1–2):113–117

    Article  CAS  Google Scholar 

  26. Bylund D, Norström SH, Essén SA, Lundström US (2007) Analysis of low molecular mass organic acids in natural waters by ion exclusion chromatography tandem mass spectrometry. J Chromatogr A 1176(1–2):89–93

    Article  CAS  Google Scholar 

  27. Langner HJ (1965) Gaschromatographische Trennung und Bestimmung der Milchsäure als Methylester an Golay-Säulen. Mitteilung aus dem Institut für Lebensmittelhygiene der Freien Universität Berlin 129(1):25–26

    CAS  Google Scholar 

  28. Maurer HH, Arlt JW (1998) Detection of 4-hydroxycoumarin anticoagulants and their metabolites in urine as part of a systematic toxicological analysis procedure for acidic drugs and poisons by gas chromatography–mass spectrometry after extractive methylation. J Chromatogr B Biomed Appl 714(2):181–195

    Article  CAS  Google Scholar 

  29. Nakao R, Oka K, Fukumoto T (1981) Simple method for the esterification of carboxylic acids using chlorosilanes. Bull Chem Soc Jpn 54:1267–1268

    Article  CAS  Google Scholar 

  30. van Hees PAW, Johansson E, Jones DL (2008) Dynamics of simple carbon compounds in two forest soils as revealed by soil solution concentrations and biodegradation kinetics. Plant Soil 310:11–23

    Article  Google Scholar 

  31. Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful for financial support from the Austrian Science Fund (Project P20069-B16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Hann.

Additional information

Published in the special issue Analytical Sciences in Austria with guest editors G. Allmaier, W. Buchberger, and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaitz, L., Mueller, B., Koellensperger, G. et al. LC–MS analysis of low molecular weight organic acids derived from root exudation. Anal Bioanal Chem 400, 2587–2596 (2011). https://doi.org/10.1007/s00216-010-4090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4090-0

Keywords

Navigation