Skip to main content

Advertisement

Log in

Quercetin relieves chronic lead exposure-induced impairment of synaptic plasticity in rat dentate gyrus in vivo

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that lead (Pb) produces impairments partly through oxidative stress. Though many researchers have investigated protective effect of some antioxidant nutrients against Pb toxicity, little information is available about the effect of antioxidants on Pb-induced impairment of synaptic plasticity. Quercetin, a strong antioxidant and radical scavenger, is the representative natural flavonoid molecule abundant in fruits and vegetables. Previous studies have found that quercetin was neuroprotective in many cases. This study was designed to evaluate the effect of quercetin on chronic Pb exposure-induced impairment of synaptic plasticity in adult rat dentate gyrus (DG) area in vivo. The input/output (I/O) functions, paired-pulse reactions (PPR), excitatory postsynaptic potential (EPSP), and population spike (PS) amplitude were measured in the DG area of different groups of rats in response to stimulation applied to the lateral perforant path. The results showed that the depressed I/O, PPR, and long-term potentiation (LTP) of Pb-exposed group were significantly increased by quercetin treatment. In addition, hippocampal Pb concentration was partially reduced after quercetin treatment. These findings suggest that quercetin treatment could relieve chronic Pb exposure-induced impairment of synaptic plasticity and might be a potential therapeutic intervention to cure cognitive deficits induced by Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

control + Que:

control with quercetin treatment

CREB:

cyclic-AMP response element binding protein

DG:

dentate gyrus

EPSP:

excitatory postsynaptic potential

I/O:

input/output functions

IPI:

interpulse interval

LTP:

long-term potentiation

Pb + Que:

chronic lead exposed with quercetin treatment

PPF:

paired-pulse facilitation

PPR:

paired-pulse reactions

PS:

population spike

ROS:

reactive oxygen species

References

  • Adonaylo VN, Oteiza PI (1999) Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology 135:77–85

    Article  PubMed  CAS  Google Scholar 

  • Altmann L, Weinsberg F, Sveinsson K, Lilienthal H, Wiegand H, Winneke G (1993) Impairment of long-term potentiation and learning following chronic lead exposure. Toxicol Lett 66:105–112

    Article  PubMed  CAS  Google Scholar 

  • Aykin-Burns N, Laegeler A, Kellogg G, Ercal N (2003) Oxidative effects of lead in young and adult Fisher 344 rats. Arch Environ Contam Toxicol 44:417–420

    Article  PubMed  CAS  Google Scholar 

  • Batra N, Nehru B, Bansal MP (1998) The effect of zinc supplementation on the effects of lead on the rat testis. Reprod Toxicol 12:535–540

    Article  PubMed  CAS  Google Scholar 

  • Bellinger D, Sloman J, Leviton A, Rabinowitz M, Needleman HL, Waternaux C (1991) Low-level lead exposure and children’s cognitive function in the preschool years. Pediatrics 87:219–227

    PubMed  CAS  Google Scholar 

  • Bennet C, Bettaiya R, Rajanna S, Baker L, Yallapragada PR, Brice JJ, White SL, Bokara KK (2007) Region specific increase in the antioxidant enzymes and lipid peroxidation products in the brain of rats exposed to lead. Free Radic Res 41:267–273

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia SS, Kar A (1997) Protective effects of vitamin E against lead-induced deterioration of membrane associated type-I iodothyronine 5¢-monodeiodinase (5¢D-I) activity in male mice. Toxicology 124:203–209

    Article  PubMed  CAS  Google Scholar 

  • Cho JY, Kim IS, Jang YH, Kim AR, Lee SR (2006) Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett 404:330–335

    Article  PubMed  CAS  Google Scholar 

  • Cornard JP, Dangleterre L, Lapouge C (2005) Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)–quercetin complex. J Phys Chem A Mol Spectrosc Kinet Environ Gen Theory 109:10044–10051

    PubMed  CAS  Google Scholar 

  • Cory-Slechta DA (1995) Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions. Annu Rev Pharmacol Toxicol 35:391–415

    PubMed  CAS  Google Scholar 

  • Croft KD (1998) The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442

    Article  PubMed  CAS  Google Scholar 

  • Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101

    Article  PubMed  CAS  Google Scholar 

  • Dhawan M, Flora SJ, Tandon SK (1989) Preventive and therapeutic role of vitamin E in chronic plumbism. Biomed Environ Sci 2:335–340

    PubMed  CAS  Google Scholar 

  • Ding Y, Gonick HC, Vaziri ND (2000) Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells. Am J Hypertens 13:552–555

    Article  PubMed  CAS  Google Scholar 

  • Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee YH, Jin C, Lee YS, Cho J (2003) Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res 965:130–136

    Article  PubMed  CAS  Google Scholar 

  • Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC (2002) Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75:880–886

    PubMed  CAS  Google Scholar 

  • Gilbert ME, Mack CM, Lasley SM (1996) Chronic developmental lead exposure increases the threshold for long-term potentiation in rat dentate gyrus in vivo. Brain Res 736:118–124

    Article  PubMed  CAS  Google Scholar 

  • Gilbert ME, Mack CM, Lasley SM (1999) The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo. Neurotoxicology 20:57–69

    PubMed  CAS  Google Scholar 

  • Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29:927–945

    Article  PubMed  CAS  Google Scholar 

  • Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC (2007) A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 45:2179–2205

    Article  PubMed  CAS  Google Scholar 

  • Hsu PC, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44

    Article  PubMed  CAS  Google Scholar 

  • Hsu PC, Liu MY, Hsu CC, Chen LY, Leon Guo Y (1997) Lead exposure causes generation of reactive oxygen species and functional impairment in rat sperm. Toxicology 122:133–143

    Article  PubMed  CAS  Google Scholar 

  • Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16:973–982

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD (1990) Heavy metals and heavy metal antagonists. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) Goodman & Gilman’s the pharmacological basis of therapeutics. New York, Peragamon

    Google Scholar 

  • Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146:223–230

    PubMed  CAS  Google Scholar 

  • Lasley SM, Gilbert ME (2000) Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. Neurotoxicology 21:1057–1068

    PubMed  CAS  Google Scholar 

  • Liu J, Yu H, Ning X (2006) Effect of quercetin on chronic enhancement of spatial learning and memory of mice. Sci China C Life Sci 49:583–590

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Zheng YL, Luo L, Wu DM, Sun DX, Feng YJ (2006) Quercetin reverses d-galactose induced neurotoxicity in mouse brain. Behav Brain Res 171:251–260

    Article  PubMed  CAS  Google Scholar 

  • Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103:16568–16573

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL (1993) The mechanism of expression of long-term enhancement of hippocampal synapses: current issues and theoretical implications. Annu Rev Physiol 55:375–396

    Article  PubMed  CAS  Google Scholar 

  • Middleton E Jr., Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  • Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res 133:135–141

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25:647–659

    Article  PubMed  CAS  Google Scholar 

  • Pande M, Flora SJ (2002) Lead induced oxidative damage and its response to combined administration of alpha-lipoic acid and succimers in rats. Toxicology 177:187–196

    Article  PubMed  CAS  Google Scholar 

  • Patra RC, Swarup D, Dwivedi SK (2001) Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162:81–88

    Article  PubMed  CAS  Google Scholar 

  • PDRNS (2001) Quercetin. In: Physicians’ Desk Reference For Nutritional Supplements,1st Ed. Physicians’ Desk Reference (PDR), Demoines, Iowa/Medical Economics Data Production Company, Montvale, New Jersey, pp 390–392. Available from: <http://www.pdrhealth.com/drug_info/nmdrugprofiles/nutsupdrugs/que_0219.shtml>

  • Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, Egawa T, Kitamura Y, Egashira N, Iwasaki K, Fujiwara M (2007) Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 104:329–334

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. Faseb J 9:526–533

    PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    Article  PubMed  CAS  Google Scholar 

  • Ruan DY, Chen JT, Zhao C, Xu YZ, Wang M, Zhao WF (1998) Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposure in vivo. Brain Res 806:196–201

    Article  PubMed  CAS  Google Scholar 

  • Simon JA, Hudes ES (1999) Relationship of ascorbic acid to blood lead levels. Jama 281:2289–2293

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Chander V, Chopra K (2004) The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats. Arch Med Res 35:484–494

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278:34783–34793

    Article  PubMed  CAS  Google Scholar 

  • Sullivan M, Follis RH Jr., Hilgartner M (1951) Toxicology of podophyllin. Proc Soc Exp Biol Med 77:269–272

    PubMed  CAS  Google Scholar 

  • Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2 + influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726

    Article  PubMed  CAS  Google Scholar 

  • Ternaux JP, Portalier P (2002) Effect of quercetine on survival and morphological properties of cultured embryonic rat spinal motoneurones. Neurosci Lett 332:33–36

    Article  PubMed  CAS  Google Scholar 

  • Theoharides TC, Bielory L (2004) Mast cells and mast cell mediators as targets of dietary supplements. Ann Allergy Asthma Immunol 93:S24–34

    Article  PubMed  CAS  Google Scholar 

  • Toscano CD, Hashemzadeh-Gargari H, McGlothan JL, Guilarte TR (2002) Developmental Pb2 + exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Brain Res Dev Brain Res 139:217–226

    Article  PubMed  CAS  Google Scholar 

  • Toscano CD, McGlothan JL, Guilarte TR (2003) Lead exposure alters cyclic-AMP response element binding protein phosphorylation and binding activity in the developing rat brain. Brain Res Dev Brain Res 145:219–228

    Article  PubMed  CAS  Google Scholar 

  • Villeda-Hernandez J, Barroso-Moguel R, Mendez-Armenta M, Nava-Ruiz C, Huerta-Romero R, Rios C (2001) Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain Res Bull 55:247–251

    Article  PubMed  CAS  Google Scholar 

  • Viola H, Furman M, Izquierdo LA, Alonso M, Barros DM, de Souza MM, Izquierdo I, Medina JH (2000) Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty. J Neurosci 20:RC112

    PubMed  CAS  Google Scholar 

  • Wie MB, Ha HJ, Park SM (2000) Quercetin attenuates oxygen-glucose deprivation-induced neurotoxicity in cortical cultures. Soc Neurosci Abstr 26:2895

    Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:592–604

    Article  PubMed  CAS  Google Scholar 

  • Zelikoff JT, Parsons E, Schlesinger RB (1993) Inhalation of particulate lead oxide disrupts pulmonary macrophage-mediated functions important for host defense and tumor surveillance in the lung. Environ Res 62:207–222

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Basic Research Program of China (no. 2002CB512907), the National Nature Science Foundation of China (nos. 30630057; 30670554; 30670662; 30672290), Academia Sinica (No. KZCX3-SW-437), China Postdoctoral Science Foundation (No.20060400719), K. C. Wong Education Foundation of Hong Kong, and Anhui Provincial Natural Science Foundation (No.050430801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-Yun Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P., Wang, M., Chen, WH. et al. Quercetin relieves chronic lead exposure-induced impairment of synaptic plasticity in rat dentate gyrus in vivo. Naunyn-Schmied Arch Pharmacol 378, 43–51 (2008). https://doi.org/10.1007/s00210-008-0301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0301-z

Keywords

Navigation