Skip to main content
Log in

Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress-mediated hepatocellular tumor promotion of oxfendazole in rats

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

To clarify whether enzymatically modified isoquercitrin (EMIQ) or melatonin (MLT) supplementation reduces oxidative stress-mediated hepatocellular tumor-promoting effect of oxfendazole (OX), a benzimidazole anthelmintic, male rats were administered a single intraperitoneal injection of N-diethylnitrosamine (DEN) and were fed a diet containing OX (500 ppm) for 10 weeks with or without EMIQ (2,000 ppm) or MLT (100 ppm) in the drinking water after DEN initiation. One week after the commencement of the administration of OX, rats were subjected to two-thirds of partial hepatectomy. The number of GST-P-positive foci promoted by OX was significantly inhibited by the combined antioxidant EMIQ or MLT administration, and the area of GST-P-positive foci was inhibited by the administration of MLT. Real-time RT–PCR analysis revealed decreases in mRNA expression levels of cytochrome P450, family 2, subfamily b, polypeptide 2 (Cyp2b2) and malic enzyme 1 (Me1) in the DEN-OX-EMIQ and DEN-OX-MLT groups and decreases in mRNA expression levels of Cyp1a1 and aldo–keto reductase family 7, member A3 (Akr7a3) in the DEN-OX-MLT group compared to those in the DEN-OX group. In in vitro ROS production assay, inhibited production of NADPH-dependent ROS was observed by the treatment with EMIQ or MLT. These results suggest that coadministration of EMIQ or MLT suppresses the hepatocellular tumor-promoting activity of OX in rats through the decrease in ROS production by the activation of CYPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OX:

Oxfendazole

EMIQ:

Enzymatically modified isoquercitrin

MLT:

Melatonin

AhR:

Aryl hydrocarbon receptor

DEN:

N-diethylnitrosamine

GST-P:

Glutathione S-transferase placental form

Real-time RT–PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

Nrf2:

NF-E2-related factor 2

ROS:

Reactive oxygen species

H2DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

DCF:

2′,7′-Dichlorofluorescein

NADPH:

Nicotinamide adenine dinucleotide phosphate

Cyp1a1:

Cytochrome P450, family 1, subfamily a, polypeptide 1

Cyp1a2:

Cytochrome P450, family 1, subfamily a, polypeptide 2

Cyp2b2:

Cytochrome P450, family 2, subfamily b, polypeptide 2

Nqo1:

NAD(P)H dehydrogenase, quinone 1

Gstm1:

Glutathione S-transferase, mu 1

Gpx2:

Glutathione peroxidase 2

Akr7a3:

Aldo–keto reductase family 7, member A3

Yc2:

Glutathione S-transferase Yc2 subunit

Me1:

Malic enzyme 1

AFAR:

Aflatoxin B1 aldehyde reductase

References

  • Adams TB, McGowen MM, Williams MC, Cohen SM, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Portoghese PS, Smith RL, Waddell WJ (2007) The FEMA GRAS assessment of aromatic substituted secondary alcohols, ketones, and related esters used as flavor ingredients. Food Chem Toxicol 45:171–201

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Washino T, Yamada T, Koda T, Maitani T (2000) Constituents of enzymatically modified isoquercitrin and enzymatically modified rutin (extract). Jpn J Food Chem 6:88–92

    Google Scholar 

  • Bettahi I, Pozo D, Osuna C, Reiter RJ, Acuna-Castroviejo D, Guerrero JM (1996) Physiological concentrations of melatonin inhibit nitric oxide synthase activity in the rat hypothalamus. J Pineal Res 20:205–210

    Article  CAS  PubMed  Google Scholar 

  • Blask DE, Sauer LA, Dauchy RT, Holowachuk EW, Ruhoff MS, Kopff HS (1999) Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Cancer Res 59:4693–4701

    CAS  PubMed  Google Scholar 

  • Canistro D, Cantelli-Forti G, Biagi GL, Paolini M (2002) Re: dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicol Appl Pharmacol 185:74–75

    Article  CAS  PubMed  Google Scholar 

  • Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21:2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Reiter RJ (2001) Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol 426:1–10

    Article  CAS  PubMed  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M, Matsumoto S, Takahashi M, Jin M, Mitsumori K (2007) Gene expression analyses of the liver in rats treated with oxfendazole. Arch Toxicol 81:647–654

    Article  CAS  PubMed  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M, Jin M, Saegusa Y, Okamura T, Tasaki M, Umemura T, Mitsumori K (2008) β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats. Toxicology 244:179–189

    Article  CAS  PubMed  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M, Jin M, Kawai M, Saegusa Y, Okamura T, Umemura T, Mitsumori K (2009) Involvement of oxidative stress in hepatocellular tumor-promoting activity of oxfendazole in rats. Arch Toxicol 83:503–511

    Article  CAS  PubMed  Google Scholar 

  • Gerdin MJ, Masana MI, Rivera-Bermudez MA, Hudson RL, Earnest DJ, Gillette MU, Dubocovich ML (2004) Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J 18:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DEJ, Taylor MA (2001) Drugs used in the treatment and control of parasitic infections. In: Bishop J (ed) The veterinary formulary, 5th edn. Pharmaceutical Press, London, pp 219–245

    Google Scholar 

  • Japanese Ministry of Health and Welfare (1996) The list of existing food additives. Notification No.120

  • Judah DJ, Hayes JD, Yang JC, Lian LY, Roberts GC, Farmer PB, Lamb JH, Neal GE (1993) A novel aldehyde reductase with activity towards a metabolite of aflatoxin B1 is expressed in rat liver during carcinogenesis and following the administration of an anti-oxidant. Biochem J 292:13–18

    CAS  PubMed  Google Scholar 

  • Kadlubar F, Hammons G (1987) The role of cytochrome P450 in the metabolism of chemical carcinogens, 81–130. In: Guengerich FP (ed) Mammalian cytochromes P-450. CRC Press, Boca Raton

    Google Scholar 

  • Karbownik M, Reiter RJ (2000) Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 225:9–22

    Article  CAS  PubMed  Google Scholar 

  • Karbownik M, Tan DX, Reiter RJ (2000) Melatonin reduces the oxidation of nuclear DNA and membrane lipids induced by the carcinogen delta-aminolevulinic acid. Int J Cancer 88:7–11

    Article  CAS  PubMed  Google Scholar 

  • Karbownik M, Lewinski A, Reiter RJ (2001) Anticarcinogenic actions of melatonin which involve antioxidative processes: comparison with other antioxidants. Int J Biochem Cell Biol 33:735–753

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Abbas A, Jefferson LS (2008) Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras. J Pineal Res 44:379–386

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita A, Wanibuchi H, Imaoka S, Ogawa M, Masuda C, Morimura K, Funae Y, Fukushima S (2002) Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: association with expression profiles of p21(WAF1/Cip1), cyclin D1 and Ogg1. Carcinogenesis 23:341–349

    Article  CAS  PubMed  Google Scholar 

  • Knerr S, Schaefer J, Both S, Mally A, Dekant W, Schrenk D (2006) 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induced cytochrome P450 s alter the formation of reactive oxygen species in liver cells. Mol Nutr Food Res 50:378–384

    Article  CAS  PubMed  Google Scholar 

  • Knight LP, Primiano T, Groopman JD, Kensler TW, Sutter TR (1999) cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo–keto reductase superfamily, AKR7A3. Carcinogenesis 20:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Egner PA, Dolan PM, Ramos-Gomez M, Groopman JD, Itoh K, Yamamoto M, Kensler TW (2001) Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat Res 480–481:305–315

    PubMed  Google Scholar 

  • Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278:8135–8145

    Article  CAS  PubMed  Google Scholar 

  • Li PK, Witt-Enderby PA (2000) Melatonin receptors as potential targets for drug discovery. Drugs Future 25:945–957

    CAS  Google Scholar 

  • Li J, Lee JM, Johnson JA (2002) Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. J Biol Chem 277:388–394

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD (2001) The Cap’n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307

    CAS  PubMed  Google Scholar 

  • Mitsumori K, Onodera H, Shoda T, Uneyama C, Imazawa T, Takegawa K, Yasuhara K, Watanabe T, Takahashi M (1997) Liver tumour-promoting effects of oxfendazole in rats. Food Chem Toxicol 35:799–806

    Article  CAS  PubMed  Google Scholar 

  • Montilla P, Túnez I, Muñoz MC, Soria JV, López A (1997) Antioxidative effect of melatonin in rat brain oxidative stress induced by adriamycin. Rev Esp Fisiol 53:301–305

    CAS  PubMed  Google Scholar 

  • Moto M, Umemura T, Okamura M, Muguruma M, Ito T, Jin M, Kashida Y, Mitsumori K (2006) Possible involvement of oxidative stress in dicyclanil-induced hepatocarcinogenesis in mice. Arch Toxicol 80:694–702

    Article  CAS  PubMed  Google Scholar 

  • Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K (2007) Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 236:61–75

    Article  CAS  PubMed  Google Scholar 

  • Murugan RS, Uchida K, Hara Y, Nagini S (2008) Black tea polyphenols modulate xenobiotic-metabolizing enzymes, oxidative stress and adduct formation in a rat hepatocarcinogenesis model. Free Radic Res 42:873–884

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Shigenaga MK, Ames BN (1996) Induction of cytochrome P4501A1 by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin or indolo(3, 2-b)carbazole is associated with oxidative DNA damage. Proc Natl Acad Sci USA 93:2322–2327

    Article  CAS  PubMed  Google Scholar 

  • Peraino C, Fry RJ, Staffeldt E (1971) Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene. Cancer Res 31:1506–1512

    CAS  PubMed  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Article  Google Scholar 

  • Puntarulo S, Cederbaum AI (1998) Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic Biol Med 24:1324–1330

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in Nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1994) Melatonin: multi-faceted messenger to the masses. Lab Med 25:436–441

    Google Scholar 

  • Reiter RJ (1997) Antioxidant actions of melatonin. Adv Pharmacol 38:103–117

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1999) Oxidative damage to nuclear DNA: amelioration by melatonin. NEL review. Neuro Endocrinol Lett 20:145–150

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Cabrera J, D’Arpa D, Sainz RM, Mayo JC, Ramos S (1999) The oxidant antioxidant network: role of melatonin. Biol Signals Recept 8:56–63

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan D-X, Qi W, Manchester LC, Karbownik M, Calvo JR (2000) Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept 9:160–171

    Article  CAS  PubMed  Google Scholar 

  • Schlezinger JJ, Struntz WD, Goldstone JV, Stegeman JJ (2006) Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquat Toxicol 77:422–432

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Sequeira DJ, Eyer CS, Cawley GF, Nick TG, Backes WL (1992) Ethylbenzene-mediated induction of cytochrome P450 isozymes in male and female rats. Biochem Pharmacol 44:1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Serron SC, Dwivedi N, Backes WL (2000) Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes. Toxicol Appl Pharmacol 164:305–311

    Article  CAS  PubMed  Google Scholar 

  • Shertzer HG, Genter MB, Shen D, Nebert DW, Chen Y, Dalton TP (2006) TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F(0)F(1)-ATP synthase and ubiquinone. Toxicol Appl Pharmacol 217:363–374

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Portoghese PS, Waddell WJ, Wagner BM, Adams TB (2005) The expert panel of the flavor and extract manufacturers association. Criteria for the safety evaluation of flavoring substances. The expert panel of the flavor and extract manufacturers association. Food Chem Toxicol 43:1141–1177

    Article  CAS  PubMed  Google Scholar 

  • Sugie S, Okamoto K, Ushida J, Rahman K, Vinh P, Suzui N, Watanabe T, Tanaka T, Mori H (1998) Modifying effect of melatonin on diethylnitrosamine (DEN)-phenobarbital (PB) induced rat hepatocarcinogenesis. In: Proceedings of 57th annual meeting of the Japanese cancer association, Japanese Cancer Association, p 306

  • Tamano S, Hatahara Y, Sano M, Hagiwara A, Nakamura M, Washino T, Imaida K (2001) 13-Week oral toxicity and 4-week recovery study of enzymatically modified isoquercitrin in F344/DuCrj rats. Jpn J Food Chem 8:161–167

    CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 29:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2007) Agency Response Letter GRAS Notice No. GRN 000220

  • Velik J, Baliharova V, Fink-Gremmels J, Bull S, Lamka J, Skalova L (2004) Benzimidazole drugs and modulation of biotransformation enzymes. Res Vet Sci 76:95–108

    Article  CAS  PubMed  Google Scholar 

  • Videla LA, Fernández V, Tapia G, Varela P (2003) Oxidative stress-mediated hepatotoxicity of iron and copper: role of Kupffer cells. Biometals 16:103–111

    Article  CAS  PubMed  Google Scholar 

  • Waxman DJ, Azaroff L (1992) Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281:577–592

    CAS  PubMed  Google Scholar 

  • World Health Organization (1991) WHO technical report series, No. 815. Evaluation of certain veterinary drug residues in food. Thirty-eighth report of the Joint FAO/WHOExpert committee on food additives. World Health Organization, Geneva

    Google Scholar 

  • Yokohira M, Yamakawa K, Saoo K, Matsuda Y, Hosokawa K, Hashimoto N, Kuno T, Imaida K (2008) Antioxidant effects of flavonoids used as food additives (purple corn color, enzymatically modified isoquercitrin, and isoquercitrin) on liver carcinogenesis in a rat medium-term bioassay. J Food Sci 73:C561–C568

    Article  CAS  PubMed  Google Scholar 

  • Zang LY, Cosma G, Gardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochem Biophys Acta 1425:469–477

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Ministry of Health, Labor and Welfare of Japan and San-Ei Gen F.F.I, Inc. (Osaka, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunitoshi Mitsumori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, J., Saegusa, Y., Dewa, Y. et al. Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress-mediated hepatocellular tumor promotion of oxfendazole in rats. Arch Toxicol 84, 143–153 (2010). https://doi.org/10.1007/s00204-009-0497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0497-9

Keywords

Navigation