Skip to main content
Log in

Determinants of regional ventilation and blood flow in the lung

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

The principles of ventilation and perfusion distribution in the lung form the foundation of pulmonary physiology and remain cornerstones in caring for critically ill patients. Due to improved imaging technologies with greater spatial resolution, our understanding of the determinants of local ventilation and blood flow have evolved over the past five decades. This review provides a brief history of how the concepts governing regional ventilation and perfusion have developed and presents the most recent studies that are shaping new perspectives on the determinants of ventilation and perfusion. How these new principles apply to acute lung injury and gas exchange in the intensive care unit (ICU) are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin C, Cline F, Marshall H (1953) Lobar alveolar gas concentrations: effect of body position. J Clin Invest 32:617–621

    Article  PubMed  CAS  Google Scholar 

  2. Rahn H, Sadoul P, Farhi L, Shapiro J (1956) Distribution of ventilation and perfusion in the lobes of the dog’s lung in the supine and erect position. J Appl Physiol 8:417–426

    PubMed  CAS  Google Scholar 

  3. Anthonisen NR, Milic-Emili J (1966) Distribution of pulmonary perfusion in erect man. J Appl Physiol 21:760–766

    PubMed  CAS  Google Scholar 

  4. Ball WC Jr, Stewart PB, Newsham LG, Bates DV (1962) Regional pulmonary function studied with xenon 133. J Clin Invest 41:519–531

    Article  PubMed  CAS  Google Scholar 

  5. Bryan AC, Bentivoglio LG, Beerel F, Macleish H, Zidulka A, Bates DV (1964) Factors affecting regional distribution of ventilation and perfusion in the lung. J Appl Physiol 19:395–402

    PubMed  CAS  Google Scholar 

  6. Hughes JM, Glazier JB, Maloney JE, West JB (1968) Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 4:58–72

    Article  PubMed  CAS  Google Scholar 

  7. Banister J, Torrance RW (1960) The effects of the tracheal pressure upon flow: pressure relations in the vascular bed of isolated lungs. Q J Exp Physiol Cogn Med Sci 45:352–367

    PubMed  CAS  Google Scholar 

  8. West JB (1978) Regional differences in the lung. Chest 74:426–437

    Article  PubMed  CAS  Google Scholar 

  9. West JB (1977) Respiratory physiology: the essentials. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  10. Reed JH Jr, Wood EH (1970) Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 28:303–311

    PubMed  Google Scholar 

  11. Beck KC, Rehder K (1986) Differences in regional vascular conductances in isolated dog lungs. J Appl Physiol 61:530–538

    PubMed  CAS  Google Scholar 

  12. Amis TC, Heather JD, Hughes JM, Jones HA, Rhodes CG (1979) Regional distribution of pulmonary ventilation and perfusion in the conscious dog [proceedings]. J Physiol 295:40P

    PubMed  CAS  Google Scholar 

  13. Bryan AC, Milic-Emili J, Pengelly D (1966) Effect of gravity on the distribution of pulmonary ventilation. J Appl Physiol 21:778–784

    PubMed  CAS  Google Scholar 

  14. Glaister DH (1970) Distribution of pulmonary blood flow and ventilation during forward (plus Gx) acceleration. J Appl Physiol 29:432–439

    PubMed  CAS  Google Scholar 

  15. Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, Prisk GK (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 103:240–248

    Article  PubMed  Google Scholar 

  16. Olson LE, Rodarte JR (1984) Regional differences in expansion in excised dog lung lobes. J Appl Physiol 57:1710–1714

    PubMed  CAS  Google Scholar 

  17. Hubmayr RD, Rodarte JR, Walters BJ, Tonelli FM (1987) Regional ventilation during spontaneous breathing and mechanical ventilation in dogs. J Appl Physiol 63:2467–2475

    PubMed  CAS  Google Scholar 

  18. Sprung J, Deschamps C, Hubmayr RD, Walters BJ, Rodarte JR (1989) In vivo regional diaphragm function in dogs. J Appl Physiol 67:655–662

    PubMed  CAS  Google Scholar 

  19. West JB (1962) Regional differences in gas exchange in the lung of erect man. J Appl Physiol 17:893–898

    PubMed  CAS  Google Scholar 

  20. Michels DB, West JB (1978) Distribution of pulmonary ventilation and perfusion during short periods of weightlessness. J Appl Physiol 45:987–998

    PubMed  CAS  Google Scholar 

  21. Harris RS, Schuster DP (2007) Visualizing lung function with positron emission tomography. J Appl Physiol 102:448–458

    Article  PubMed  Google Scholar 

  22. Hopkins SR, Levin DL, Emami K, Kadlecek S, Yu J, Ishii M, Rizi RR (2007) Advances in magnetic resonance imaging of lung physiology. J Appl Physiol 102:1244–1254

    Article  PubMed  Google Scholar 

  23. Petersson J, Sanchez-Crespo A, Larsson SA, Mure M (2007) Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol 102:468–476

    Article  PubMed  Google Scholar 

  24. Robertson HT, Hlastala MP (2007) Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol 102:1265–1272

    Article  PubMed  Google Scholar 

  25. Lisbona R, Dean GW, Hakim TS (1987) Observations with SPECT on the normal regional distribution of pulmonary blood flow in gravity independent planes. J Nucl Med 28:1758–1762

    PubMed  CAS  Google Scholar 

  26. Melsom MN, Flatebo T, Kramer-Johansen J, Aulie A, Sjaastad OV, Iversen PO, Nicolaysen G (1995) Both gravity and non-gravity dependent factors determine regional blood flow within the goat lung. Acta Physiol Scand 153:343–353

    Article  PubMed  CAS  Google Scholar 

  27. Glenny RW, Lamm WJ, Albert RK, Robertson HT (1991) Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol 71:620–629

    PubMed  CAS  Google Scholar 

  28. Glenny R (2008) Counterpoint: gravity is not the major factor determining the distribution of blood flow in the healthy human lung. J Appl Physiol 104:1533–1535; discussion 1535–1536

    Google Scholar 

  29. Glenny RW, Bernard S, Robertson HT, Hlastala MP (1999) Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol 86:623–632

    PubMed  CAS  Google Scholar 

  30. Glenny RW, Bernard SL, Robertson HT (2000) Pulmonary blood flow remains fractal down to the level of gas exchange. J Appl Physiol 89:742–748

    PubMed  CAS  Google Scholar 

  31. Wagner WW Jr, Todoran TM, Tanabe N, Wagner TM, Tanner JA, Glenny RW, Presson RG Jr (1999) Pulmonary capillary perfusion: intra-alveolar fractal patterns and interalveolar independence. J Appl Physiol 86:825–831

    PubMed  Google Scholar 

  32. Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2009) Regional lung blood flow and ventilation in upright humans studied with quantitative SPECT. Respir Physiol Neurobiol 166:54–60

    Article  PubMed  Google Scholar 

  33. Jones AT, Hansell DM, Evans TW (2001) Pulmonary perfusion in supine and prone positions: an electron-beam computed tomography study. J Appl Physiol 90:1342–1348

    Article  PubMed  CAS  Google Scholar 

  34. Burrowes KS, Tawhai MH (2006) Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir Physiol Neurobiol 154:515–523

    Article  PubMed  Google Scholar 

  35. Prisk GK, Guy HJ, Elliott AR, West JB (1994) Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 76:1730–1738

    PubMed  CAS  Google Scholar 

  36. Montmerle S, Sundblad P, Linnarsson D (2005) Residual heterogeneity of intra- and interregional pulmonary perfusion in short-term microgravity. J Appl Physiol 98:2268–2277

    Article  PubMed  Google Scholar 

  37. Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2007) Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir Physiol Neurobiol 156:293–303

    Article  PubMed  Google Scholar 

  38. Glenny RW, Lamm WJ, Bernard SL, An D, Chornuk M, Pool SL, Wagner WW Jr, Hlastala MP, Robertson HT (2000) Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J Appl Physiol 89:1239–1248

    PubMed  CAS  Google Scholar 

  39. Glenny RW (1992) Spatial correlation of regional pulmonary perfusion. J Appl Physiol 72:2378–2386

    PubMed  CAS  Google Scholar 

  40. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  PubMed  CAS  Google Scholar 

  41. Glenny RW, McKinney S, Robertson HT (1997) Spatial pattern of pulmonary blood flow distribution is stable over days. J Appl Physiol 82:902–907

    Article  PubMed  CAS  Google Scholar 

  42. Glenny RW, Bernard SL, Luchtel DL, Neradilek B, Polissar NL (2007) The spatial–temporal redistribution of pulmonary blood flow with postnatal growth. J Appl Physiol 102:1281–1288

    Article  PubMed  Google Scholar 

  43. Glenny R, Bernard S, Neradilek B, Polissar N (2007) Quantifying the genetic influence on mammalian vascular tree structure. Proc Natl Acad Sci USA 104:6858–6863

    Article  PubMed  CAS  Google Scholar 

  44. Glenny RW, Robertson HT (1998) Regional differences in the lung: a changing perspective on blood flow distribution. In: Hlastala MP, Robertson HT (eds) Complexity in structure and function of the lung. Dekker, New York, pp 461–481

    Google Scholar 

  45. Wagner WW Jr (2008) Point:Counterpoint: gravity is/is not the major factor determining the distribution of blood flow in the human lung. J Appl Physiol 104:1537

    Article  Google Scholar 

  46. Melsom MN, Kramer-Johansen J, Flatebo T, Muller C, Nicolaysen G (1997) Distribution of pulmonary ventilation and perfusion measured simultaneously in awake goats. Acta Physiol Scand 159:199–208

    Article  PubMed  CAS  Google Scholar 

  47. Altemeier WA, McKinney S, Glenny RW (2000) Fractal nature of regional ventilation distribution. J Appl Physiol 88:1551–1557

    PubMed  CAS  Google Scholar 

  48. Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261:L361–L369

    PubMed  CAS  Google Scholar 

  49. Treppo S, Mijailovich SM, Venegas JG (1997) Contributions of pulmonary perfusion and ventilation to heterogeneity in V(A)/Q measured by PET. J Appl Physiol 82:1163–1176

    PubMed  CAS  Google Scholar 

  50. Marcucci C, Nyhan D, Simon BA (2001) Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Physiol 90:421–430

    Article  PubMed  CAS  Google Scholar 

  51. Kreck TC, Krueger MA, Altemeier WA, Sinclair SE, Robertson HT, Shade ED, Hildebrandt J, Lamm WJ, Frazer DA, Polissar NL, Hlastala MP (2001) Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J Appl Physiol 91:1741–1749

    PubMed  CAS  Google Scholar 

  52. Musch G, Layfield JD, Harris RS, Melo MF, Winkler T, Callahan RJ, Fischman AJ, Venegas JG (2002) Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J Appl Physiol 93:1841–1851

    PubMed  Google Scholar 

  53. Petersson J, Sanchez-Crespo A, Rohdin M, Montmerle S, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Glenny RW, Mure M (2004) Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Physiol 96:1127–1136

    Article  PubMed  Google Scholar 

  54. Altemeier WA, Robertson HT, Glenny RW (1998) Pulmonary gas-exchange analysis by using simultaneous deposition of aerosolized and injected microspheres. J Appl Physiol 85:2344–2351

    PubMed  CAS  Google Scholar 

  55. Prisk GK, Fine JM, Cooper TK, West JB (2006) Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol 101:439–447

    Article  PubMed  Google Scholar 

  56. Glenny RW, Robertson HT, Hlastala MP (2000) Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia. J Appl Physiol 89:2263–2267

    PubMed  CAS  Google Scholar 

  57. Melsom MN, Flatebo T, Nicolaysen G (2000) No apparent effect of nitric oxide on the local matching of pulmonary perfusion and ventilation in awake sheep. Acta Physiol Scand 168:361–370

    Article  PubMed  CAS  Google Scholar 

  58. Arai TJ, Henderson AC, Dubowitz DJ, Levin DL, Friedman PJ, Buxton RB, Prisk GK, Hopkins SR (2008) Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 106:1034–1035

    Google Scholar 

  59. Brett SJ, Chambers J, Bush A, Rosenthal M, Evans TW (1998) Pulmonary response of normal human subjects to inhaled vasodilator substances. Clin Sci (Lond) 95:621–627

    Article  CAS  Google Scholar 

  60. Frostell CG, Blomqvist H, Hedenstierna G, Lundberg J, Zapol WM (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78:427–435

    Article  PubMed  CAS  Google Scholar 

  61. Rocca GD, Passariello M, Coccia C, Costa MG, Di Marco P, Venuta F, Rendina EA, Pietropaoli P (2001) Inhaled nitric oxide administration during one-lung ventilation in patients undergoing thoracic surgery. J Cardiothorac Vasc Anesth 15:218–223

    Article  PubMed  CAS  Google Scholar 

  62. Wilson WC, Kapelanski DP, Benumof JL, Newhart JW 2nd, Johnson FW, Channick RN (1997) Inhaled nitric oxide (40 ppm) during one-lung ventilation, in the lateral decubitus position, does not decrease pulmonary vascular resistance or improve oxygenation in normal patients. J Cardiothorac Vasc Anesth 11:172–176

    Article  PubMed  CAS  Google Scholar 

  63. Weibel E, Taylor C (1998) Functional design of the human lung for gas exchange. In: Fishman A (ed) Fishman’s pulmonary diseaes and disorders. McGraw-Hill, New York, pp 21–61

    Google Scholar 

  64. Hislop A (2005) Developmental biology of the pulmonary circulation. Paediatr Respir Rev 6:35–43

    Article  PubMed  Google Scholar 

  65. Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hypothesis of structure–function relationship. Proc Natl Acad Sci USA 88:10357–10361

    Article  PubMed  CAS  Google Scholar 

  66. Weibel ER, Sapoval B, Filoche M (2005) Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148:3–21

    Article  PubMed  Google Scholar 

  67. Hlastala MP, Lamm WJ, Karp A, Polissar NL, Starr IR, Glenny RW (2004) Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol 96:1589–1599

    Article  PubMed  Google Scholar 

  68. Frank DU, Lowson SM, Roos CM, Rich GF (1996) Endotoxin alters hypoxic pulmonary vasoconstriction in isolated rat lungs. J Appl Physiol 81:1316–1322

    PubMed  CAS  Google Scholar 

  69. Ullrich R, Bloch KD, Ichinose F, Steudel W, Zapol WM (1999) Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin-challenged NOS2-deficient mice. J Clin Invest 104:1421–1429

    Article  PubMed  CAS  Google Scholar 

  70. Marshall BE (1989) Effects of anesthetics on pulmonary gas exchange. In: Stanley T, Sperry R (eds) Anesthesia and the lung. Kluwer, London, pp 117–125

    Google Scholar 

  71. Marshall BE, Hanson CW, Frasch F, Marshall C (1994) Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med 20:379–389

    Article  PubMed  CAS  Google Scholar 

  72. Tokics L, Hedenstierna G, Strandberg A, Brismar B, Lundquist H (1987) Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 66:157–167

    Article  PubMed  CAS  Google Scholar 

  73. Walther SM, Domino KB, Glenny RW, Hlastala MP (1997) Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture. Anesthesiology 87:335–342

    Article  PubMed  CAS  Google Scholar 

  74. Walther SM, Domino KB, Glenny RW, Hlastala MP (1999) Positive end-expiratory pressure redistributes perfusion to dependent lung regions in supine but not in prone lambs. Crit Care Med 27:37–45

    Article  PubMed  CAS  Google Scholar 

  75. Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41:242–255

    Article  PubMed  CAS  Google Scholar 

  76. Rehder K, Sessler AD, Rodarte JR (1977) Regional intrapulmonary gas distribution in awake and anesthetized-paralyzed man. J Appl Physiol 42:391–402

    PubMed  CAS  Google Scholar 

  77. Reber A, Engberg G, Sporre B, Kviele L, Rothen HU, Wegenius G, Nylund U, Hedenstierna G (1996) Volumetric analysis of aeration in the lungs during general anaesthesia. Br J Anaesth 76:760–766

    PubMed  CAS  Google Scholar 

  78. Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784

    Article  PubMed  Google Scholar 

  79. Alsaghir AH, Martin CM (2008) Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis. Crit Care Med 36:603–609

    Article  PubMed  Google Scholar 

  80. Sud S, Sud M, Friedrich JO, Adhikari NK (2008) Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ 178:1153–1161

    PubMed  Google Scholar 

  81. Mure M, Domino KB, Lindahl SG, Hlastala MP, Altemeier WA, Glenny RW (2000) Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol 88:1076–1083

    PubMed  CAS  Google Scholar 

  82. Richter T, Bellani G, Scott Harris R, Vidal Melo MF, Winkler T, Venegas JG, Musch G (2005) Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med 172:480–487

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robb W. Glenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glenny, R.W. Determinants of regional ventilation and blood flow in the lung. Intensive Care Med 35, 1833–1842 (2009). https://doi.org/10.1007/s00134-009-1649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1649-3

Keywords

Navigation